Number processing deficits are frequently seen in children prenatally exposed to alcohol. Although the parietal lobe, which is known to mediate several key aspects of number processing, has been shown to be structurally impaired in fetal alcohol spectrum disorders (FASD), effects on functional activity in this region during number processing have not previously been investigated. This fMRI study of 49 children examined differences in activation associated with prenatal alcohol exposure in five key parietal regions involved in number processing, using tasks involving simple addition and magnitude comparison. Despite generally similar behavioral performance, in both tasks greater prenatal alcohol exposure was related to less activation in an anterior section of the right horizontal intraparietal sulcus known to mediate mental representation and manipulation of quantity. Children with fetal alcohol syndrome and partial fetal alcohol syndrome appeared to compensate for this deficit by increased activation of the angular gyrus during the magnitude comparison task.
Number processing is a cognitive domain particularly sensitive to prenatal alcohol exposure, which relies on intact parietal functioning. Alcohol-related alterations in brain activation have been found in the parietal lobe during symbolic number processing. However, the effects of prenatal alcohol exposure on the neural correlates of non-symbolic number comparison and the numerical distance effect have not been investigated. Using functional magnetic resonance imaging (fMRI), we examined differences in brain activation associated with prenatal alcohol exposure in five parietal regions involved in number processing during a non-symbolic number comparison task with varying degrees of difficulty. fMRI results are presented for 27 Cape Colored children (6 fetal alcohol syndome (FAS)/partial FAS, 5 heavily exposed (HE) non-sydromal, 16 controls; mean age ± SD = 11.7 ± 1.1 years). Fetal alcohol exposure was assessed by interviewing mothers using a timeline follow-back approach. Separate subject analyses were performed in each of five regions of interest, bilateral horizontal intraparietal sulci (IPS), bilateral posterior superior parietal lobules (PSPL), and left angular gyrus (left AG), using the general linear model with predictors for number comparison and difficulty level. Mean percent signal change for each predictor was extracted for each subject for each region to examine group differences and associations with continuous measures of alcohol exposure. Although groups did not differ in performance, controls activated the right PSPL more during non-symbolic number comparison than exposed children, but this was not significant after controlling for maternal smoking, and the right IPS more than children with fetal alcohol syndrome (FAS) or partial FAS. More heavily exposed children recruited the left AG to a greater extent as task difficulty increased, possibly to compensate, in part, for impairments in function in the PSPL and IPS. Notably, in non-syndromal heavily exposed children activation was impaired in the right PSPL, but spared in the right IPS. These results extend previous findings of poor right IPS recruitment during symbolic number processing in FAS/PFAS, indicating that mental representation of relative quantity is affected by prenatal alcohol exposure for both symbolic and non-symbolic representations of quantity.
IntroductionAlthough performance deficits in place learning have been reported in fetal alcohol spectrum disorders (FASD), neural correlates of these deficits have not been investigated. This functional magnetic resonance imaging (fMRI) study of 57 children (41 alcohol‐exposed; 16 controls; mean age = 9.4 years; 29 boys) examined effects of prenatal alcohol exposure (PAE) on place learning in a virtual environment, the computer‐generated (CG) arena.MethodsFunctional magnetic resonance imaging data were acquired while children passively viewed a recording of an experimenter completing the task. Visible‐target blocks involved navigation to a visible platform. During invisible‐target blocks, the platform appeared only when the experimenter moved over it. After the scan, all children performed a post‐test during which they had to navigate to the location of the invisible platform.ResultsAlthough there were no group differences in post‐test performance for sex or FASD diagnosis, PAE in boys was associated with poorer performance and reduced activation in the parahippocampal gyrus (PHG), precuneus, posterior cingulate, frontal and temporal lobes, caudate, insula, claustrum, lentiform nucleus, and thalamus. By contrast, PAE was not associated with performance or activation in any regions in girls.Discussion and conclusionGirls and boys are known to use different navigation strategies. Boys rely more on an allocentric navigational strategy and girls more on landmarks. Poorer recruitment of the PHG, a region known to mediate allocentric navigation, in more heavily exposed boys may explain the observed dose‐dependent place learning deficit. The absence of PAE effects in girls suggests that landmark‐based navigational strategies may be less affected by alcohol exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.