The objective of the study is to utilise a material's inherent electrical conductivity as means of damage quantification and damage location detection. After determining the percolation threshold for a carbon nanotube (CNT)‐epoxy mixture, an optimum concentration was chosen to infuse it into glass‐fabric reinforced panels to make them electrically conductive. Two different multiwalled CNT‐epoxy composites were manufactured for this study: CNT enhanced epoxy resin and glass‐fabric reinforced CNT epoxy resin. Epoxy resin‐based glass‐fabric reinforced composite panels enhanced with carbon nanotubes were manufactured with embedded electrodes and then subjected to damages. Rectangular panels of various proportions were studied. Disks made out of copper foil were affixed to surfaces of CNT epoxy panel, whereas in glass‐fabric CNT epoxy specimen, total of 64 electrodes (grid of 8 × 8) were embedded inside the composite panel under the top layer of the 10‐ply fabric. The disks acted as electrodes, enabling voltage measurements using in‐line 4‐probe technique, which minimises contact resistance between the electrodes and the material. Two different configurations of electrode network were employed to scan voltage change in the entire composite panel. The networks included evenly spaced (3 in. for inner ones) electrodes that spanned the surface of the panel. To further investigate influence of electrodes distribution, finite element simulations were used to solve the electrical potential distribution in the panel for various damage sizes and location. Predamage and postdamage voltage field was used as gauge in sensing the damage and its extent for quantification. The finite element method simulation results matched the experimental data closely. The results indicate that there is a consistent behaviour that can be correlated to the size and location of the damage. As spacing between electrodes is increased, they become less responsive to smaller damages. Forty‐eight electrodes (out of 64) were actively used and were enough to confirm that the method can be used as an alternative to electrical tomography method where fewer (boundary) electrodes per area are employed but at a higher cost of computational cost. One important aspect of this study with embedded and distributed electrodes is the fact that the method can be applied to larger panels increasing its utility in practical applications.
Auxetic structures exhibiting non-linear deformation are a prevalent research topic in the material sciences due to their negative Poisson’s ratio. The auxetic behavior is most efficiently accomplished through buckling or hinging of 3d printed structures created with soft or flexible materials. These structures have been hypothesized to have some unique characteristics and may provide advantages over conventional engineering materials in certain applications. The objective of present study is to gain a better understanding of behavior of auxetic structures subjected to tensile, compressive and impact loads and assess geometric parameters affecting these structures in applications such as impact shielding or biomedicine. Analytical and experimental methods were employed to investigate two different types of auxetic structures which were 3d-printed with TPU (thermoplastic polyurethane). The first was based on symmetric re-entrant angles cells patterned to form sheet-like structure. Rotation of members in opposite directions in a cell induces negative Poisson’s ratio when the structure is subjected to tensile loading. The second structure was based on rectangular lattice of circular holes. This structure exhibited auxeticity due to formation of pattern of alternating mutually orthogonal ellipses when subjected to compressive and impact loads. Parameters of interest in this study included hardness of the plastic used in printing the structures, the fill pattern of 3d-printed solid parts, porosity of cylinders in the lattice structure, angles and thickness of members in the re-entrant structure. Preliminary results indicated that per unit weight of material, the re-entrant structure requires less tensile load to strain than a solid structure. This is advantageous in applications where expansion in lateral direction is required. The lattice of circular holes structure exhibited similar trend in impact and compressive loading. The results indicate that geometric parameters influence auxeticity of the structure a great deal. When the porosity of the lattice is too small, positive Poisson’s ratio is observed. The length to height ratio of the re-entrant cell has similar effect on the structure’s Poisson’s ratio. The main advantage gained by employing such structures is their overall ability to resist buckling and withstand impact load without cracking. This study will help to develop 3D-printing techniques in manufacturing better performing structures under similar conditions.
Advances in field of lattice structure design has become possible mainly due to the emerging capabilities of additive manufacturing (AM) or 3D printing. Lattices have the potential to reduce solid volumes, giving advantages such as weight reduction, decreased part production cost and ability to absorb energy under compressive and impact loading. These materials are anisotropic due to structural geometry and the additive nature of 3D-printed layers, which stack mainly in Normal or Lateral direction to the applied load. In this study 3D printed materials were fabricated that are nearly isotropic and are also lighter than base material. The lattice structure was formed using strut-based cell topologies that are adjoined as tetrahedrons. Two different tetrahedron density specimens were produced with Acrylonitrile Butadiene Styrene (ABS) using a Fusion Deposition Modelling (FDM) printer. The fabricated specimens were then tested for impact and compression capabilities. For comparison purposes, solid specimens with the same overall dimensions and highest infill ratio were also produced and tested. After compression and impact testing, results indicated that solid specimens’ impact energy absorption is higher with lateral stacking order relative to load, and compression resistance is higher for normal stacking order. The tetrahedron-filled specimens exhibited minimal stacking directional dependency and the higher count tetrahedron specimens provided more impact energy absorption and more resistance to compression than the lower count one. The normalization of specimens with respect to their weight indicated high density tetrahedron specimens’ impact energy absorption is nearly equal to that of solid specimens’. These results are initial steps in creating lattice structured materials that are isotropic, lighter and stronger than the base material.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.