Natural killer (NK) cells express receptors that are specific for MHC class I molecules. These receptors play a crucial role in regulating the lytic and cytokine expression capabilities of NK cells. In humans, three distinct families of genes have been defined that encode for receptors of HLA class I molecules. The first family identified consists of type I transmembrane molecules belonging to the immunoglobulin (Ig) superfamily and are called killer cell Ig-like receptors (KIR). A second group of receptors belonging to the Ig superfamily, named ILT (for immunoglobulin like transcripts), has more recently been described. ILTs are expressed mainly on B, T and myeloid cells, but some members of this group are also expressed on NK cells. They are also referred to as LIRs (for leukocyte Ig-like receptor) and MIRs (for macrophage Ig-like receptor). The ligands for the KIR and some of the ILT receptors include classical (class Ia) HLA class I molecules, as well as the nonclassical (class Ib) HLA-G molecule. The third family of HLA class I receptors are C-type lectin family members and are composed of heterodimers of CD94 covalently associated with a member of the NKG2 family of molecules. The ligand for most members is the nonclassical class I molecule HLA-E. NKG2D, a member of the NKG2 family, is expressed as a homodimer, along with the adaptor molecule DAP10. The ligands of NKG2D include the human class I like molecules MICA and MICB, and the recently described ULBPs. Each of these three families of receptors has individual members that can recognize identical or similar ligands yet signal for activation or inhibition of cellular functions. This dichotomy correlates with particular structural features present in the transmembrane and intracytoplasmic portions of these molecules. In this review we will discuss the molecular structure, specificity, cellular expression patterns, and function of these HLA class I receptors, as well as the chromosomal location and genetic organization.
In humans, all αβ CD8+ T cells express NKG2D, but in mouse, it is only expressed by activated and memory CD8+ T cells. We purified human naive CD8+ T cells to show that NKG2D serves as a costimulatory receptor for TCR induced Ca2+ mobilization and proliferation. The resulting effector cells are skewed toward a type 1 phenotype and produce high levels of IFN-γ and TNF-α. NKG2D ligands, MHC class I chain-related (MIC)A, MICB, and UL16-binding proteins are expressed on the proliferating cells and NKG2D is down-regulated. The addition of the homeostatic cytokines IL-7 and IL-15 to the culture medium not only enhances proliferation but also counteracts the down-regulation of NKG2D, more so than the addition of IL-2. These results indicate that NKG2D can regulate the priming of human naive CD8+ T cells, which may provide an alternative mechanism for potentiating and channeling the immune response.
NK cells are critical components of our immune system functioning, in part, to recognize and then eradicate virally infected or tumorigenic cells without previous sensitization. One of the best-characterized activating receptors expressed on NK cells is the NKG2D receptor, which is capable of transmitting co-stimulatory signals by subsets of T cells. Viruses and tumors have evolved strategies to evade NKG2D-mediated immune recognition thus highlighting the importance of this receptor in immunity. This review will focus on the structure of NKG2D and its interaction with its diverse array of ligands, as well as highlighting current knowledge regarding NKG2D signal transduction and biological mechanisms that govern its cell surface expression. The impact that NKG2D has in disease pathologies is also assessed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.