IMPORTANCERecessive dystrophic epidermolysis bullosa (RDEB) is a devastating, often fatal, inherited blistering disorder caused by mutations in the COL7A1 gene encoding type VII collagen. Support and palliation are the only current therapies.OBJECTIVE To evaluate the safety and wound outcomes following genetically corrected autologous epidermal grafts in patients with RDEB.DESIGN, SETTING, AND PARTICIPANTS Single-center phase 1 clinical trial conducted in the United States of 4 patients with severe RDEB with a measured area of wounds suitable for grafting of at least 100 cm 2 . Patients with undetectable type VII collagen keratinocyte expression were excluded.INTERVENTIONS Autologous keratinocytes isolated from biopsy samples collected from 4 patients with RDEB were transduced with good manufacturing practice-grade retrovirus carrying full-length human COL7A1 and assembled into epidermal sheet grafts. Type VII collagen gene-corrected grafts (approximately 35 cm 2 ) were transplanted onto 6 wounds in each of the patients (n = 24 grafts). MAIN OUTCOMES AND MEASURESThe primary safety outcomes were recombination competent retrovirus, cancer, and autoimmune reaction. Molecular correction was assessed as type VII collagen expression measured by immunofluorescence and immunoelectron microscopy. Wound healing was assessed using serial photographs taken at 3, 6, and 12 months after grafting. RESULTSThe 4 patients (mean age, 23 years [range, 18-32 years]) were all male with an estimated body surface area affected with RDEB of 4% to 30%. All 24 grafts were well tolerated without serious adverse events. Type VII collagen expression at the dermal-epidermal junction was demonstrated on the graft sites by immunofluorescence microscopy in 9 of 10 biopsy samples (90%) at 3 months, in 8 of 12 samples (66%) at 6 months, and in 5 of 12 samples (42%) at 12 months, including correct type VII collagen localization to anchoring fibrils. Wounds with recombinant type VII collagen graft sites displayed 75% or greater healing at 3 months (21 intact graft sites of 24 wound sites; 87%), 6 months (16/24; 67%), and 12 months (12/24; 50%) compared with baseline wound sites. CONCLUSIONS AND RELEVANCEIn this preliminary study of 4 patients with RDEB, there was wound healing in some type VII collagen gene-corrected grafts, but the response was variable among patients and among grafted sites and generally declined over 1 year. Long-term follow-up is necessary for these patients, and controlled trials are needed with a broader range of patients to better understand the potential long-term efficacy of genetically corrected autologous epidermal grafts.
Background: PRAME (PReferentially expressed Antigen in MElanoma) has shown utility in distinguishing melanoma from benign melanocytic lesions, but knowledge of its expression pattern in intermediate melanocytic and spitzoid proliferations is limited. Methods: Immunohistochemical expression of PRAME was examined in 112 melanocytic proliferations with intermediate histopathologic or spitzoid features. Results: Any intensity of nuclear PRAME staining in at least 60% of lesional melanocytes was determined as the best threshold for diffuse staining in this cohort. Nearly all non-spitzoid melanomas (23/24; 95.8%) demonstrated diffuse PRAME expression. PRAME was completely negative in 95.6% (43/45) of mitotically-active nevi, traumatized nevi, nevi with persistent/recurrent features, and dysplastic nevi. Most Spitz nevi (15/20) and atypical Spitz tumors (10/13) entirely lacked PRAME expression. One Spitz nevus, one atypical Spitz tumor, and one spitzoid melanoma (1/2) demonstrated diffuse PRAME expression. Conclusions: Although diffuse PRAME expression is generally limited to malignant melanoma, benign Spitz nevi and atypical Spitz tumors can infrequently express diffuse PRAME. PRAME immunohistochemistry can be useful in the evaluation of atypical melanocytic proliferations with intermediate histopathologic features but should be interpreted with caution in the setting of spitzoid neoplasms.
To understand the human response to DNA damage, we used microarrays to measure transcriptional responses of 10 000 genes to ionizing radiation (IR) and ultraviolet radiation (UV). To identify bona fide responses, we used cell lines from 15 individuals and a rigorous statistical method, Significance Analysis of Microarrays (SAM). By exploring how sample number affects SAM, we rendered a portrait of the human damage response with a degree of accuracy unmatched by previous studies. By showing how SAM can be used to estimate the total number of responsive genes, we discovered that 24% of all genes respond to IR and 32% respond to UV, although most responses were less than 2-fold. Many genes were involved in known damage-response pathways for cell cycling and proliferation, apoptosis, DNA repair or the stress response. However, the majority of genes were involved in unexpected pathways, with functions in signal transduction, RNA binding and editing, protein synthesis and degradation, energy metabolism, metabolism of macromolecular precursors, cell structure and adhesion, vesicle transport, or lysosomal metabolism. Although these functions were not previously associated with the damage response in mammals, many were conserved in yeast. These insights reveal new directions for studying the human response to DNA damage.
This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as
Toxicity from radiation therapy is a grave problem for cancer patients. We hypothesized that some cases of toxicity are associated with abnormal transcriptional responses to radiation. We used microarrays to measure responses to ionizing and UV radiation in lymphoblastoid cells derived from 14 patients with acute radiation toxicity. The analysis used heterogeneity-associated transformation of the data to account for a clinical outcome arising from more than one underlying cause. To compute the risk of toxicity for each patient, we applied nearest shrunken centroids, a method that identifies and cross-validates predictive genes. Transcriptional responses in 24 genes predicted radiation toxicity in 9 of 14 patients with no false positives among 43 controls (P ؍ 2.2 ؋ 10 ؊7 ). The responses of these nine patients displayed significant heterogeneity. Of the five patients with toxicity and normal responses, two were treated with protocols that proved to be highly toxic. These results may enable physicians to predict toxicity and tailor treatment for individual patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.