<p>Deforestation has a wide range of effects on hydrological and geochemical processes. Dissolved organic carbon (DOC) dynamics, a sensitive environmental change indicator, is expected to be affected by deforestation, with changes in atmospheric sulfur (S) deposition compounding this. However, how precisely anthropogenic disturbance (deforestation) under a declining atmospheric S input scenario affects the underlying spatiotemporal dynamics and relationships of river DOC and sulfate with hydro-climatological variables e.g., stream water temperature, runoff, pH, total dissolved iron (Fetot), and calcium (Ca<sup>2+</sup>) remains unclear. We, therefore, examined this issue within the TERENO Wu&#776;stebach catchment (Eifel, Germany), where partial deforestation had taken place in 2013. Wavelet transform coherence (WTC) analysis was applied based on a 10-year time series (2010&#8211;2020) from three sampling stations, whose (sub) catchment areas have different proportions of deforested area (W10: 31%, W14: 25%, W17: 3%). We found that water temperature and DOC, sulfate, and Fetot concentrations showed distinct seasonal patterns, with DOC averaging concentrations ranging from 2.23 (W17) to 4.56 (W10) mg L<sup>-1</sup> and sulfate concentration ranging from 8.04 (W10) to 10.58 (W17) mg L<sup>-1</sup>. After clear-cut, DOC significantly increased by 59, 58% in the mainstream (W10, W14), but only 26% in the reference stream. WTC results indicated that DOC was negatively correlated with runoff and sulfate, but positively correlated with temperature, Ca<sup>2+</sup>, and Fetot. The negative correlation between DOC with runoff and sulfate was apparent over the whole examined 10-year period in W17 but did end in W10 and W14 after the deforestation. Sulfate was highly correlated with stream water temperature, runoff, and Fetot in W10 and W14 and with a longer lag time than W17. Additionally, pH was stronger correlated (higher R<sup>2</sup>) with sulfate and DOC in W17 than in W10 and W14. In conclusion, WTC analysis indicates that within this low mountainous forest catchment deforestation levels over 25% (W10 and W14) affected the coupling of S and C cycling substantially more strongly than &#8220;natural&#8221; environmental changes as observed in W17.</p>
Deforestation has a wide range of effects on hydrological and geochemical processes. Dissolved organic carbon (DOC) dynamics, a sensitive environmental change indicator, is expected to be affected by deforestation, with changes in atmospheric sulfur (S) deposition compounding this. However, how precisely anthropogenic disturbance (deforestation) under a declining atmospheric S input scenario affects the underlying spatiotemporal dynamics and relationships of river DOC and sulfate with hydro-climatological variables e.g., stream water temperature, runoff, pH, total dissolved iron (Fetot), and calcium (Ca2+) remains unclear. We, therefore, examined this issue within the TERENO Wüstebach catchment (Eifel, Germany), where partial deforestation had taken place in 2013. Wavelet transform coherence (WTC) analysis was applied based on a 10-year time series (2010–2020) from three sampling stations, whose (sub) catchment areas have different proportions of deforested area (W10: 31%, W14: 25%, W17: 3%). We found that water temperature and DOC, sulfate, and Fetot concentrations showed distinct seasonal patterns, with DOC averaging concentrations ranging from 2.23 (W17) to 4.56 (W10) mg L–1 and sulfate concentration ranging from 8.04 (W10) to 10.58 (W17) mg L–1. After clear-cut, DOC significantly increased by 59, 58% in the mainstream (W10, W14), but only 26% in the reference stream. WTC results indicated that DOC was negatively correlated with runoff and sulfate, but positively correlated with temperature, Ca2+, and Fetot. The negative correlation between DOC with runoff and sulfate was apparent over the whole examined 10-year period in W17 but did end in W10 and W14 after the deforestation. Sulfate (SO4) was highly correlated with stream water temperature, runoff, and Fetot in W10 and W14 and with a longer lag time than W17. Additionally, pH was stronger correlated (higher R2) with sulfate and DOC in W17 than in W10 and W14. In conclusion, WTC analysis indicates that within this low mountainous forest catchment deforestation levels over 25% (W10 and W14) affected the coupling of S and C cycling substantially more strongly than “natural” environmental changes as observed in W17.
Deforestation can lead to an increase in the availability of nutrients in the soil and, in turn, have an impact on the quality of water in receiving water bodies. This study assesses the impact of deforestation by evaluating the in-stream concentrations of dissolved organic carbon (DOC) and nitrate, their internal relationship, and those with stream discharge in the Wüstebach headwater catchment (Germany). This catchment has monitored stream water and associated environmental parameters for over a decade as part of the TERENO initiative. Additionally, there is a paired undisturbed forested catchment that serves as a reference stream. Our approach included a more advanced correlation analysis, namely wavelet analysis, that assists in determining changes in the correlation and lag time between the variables of interest over different time scales. This study found that after deforestation, there was an immediate increase in in-stream DOC concentrations, followed by an increase in nitrate ~1 year later. Overall, the mean DOC concentration increased, and mean nitrate concentration decreased across the catchment post-deforestation. Elevated stream water nutrient levels peaked around 2 to 3 years after the clear-cutting, and returned to pre-deforestation levels after ~5 years. The deforestation had no influence on the anti-correlation between DOC and nitrate. However, the correlation between both compounds and discharge was likely altered due to the increased soil nutrients availability as a result of deforestation. Wavelet coherence analysis revealed the “underlying” changing strengths and directions of the main correlations between DOC, nitrate and discharge on different time scales resulting from severe forest management interventions (here deforestation). This information provides new valuable impact insights for decision making into such forest management interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.