SignificanceDecades of research have fostered the now-prevalent assumption that noncrop habitat facilitates better pest suppression by providing shelter and food resources to the predators and parasitoids of crop pests. Based on our analysis of the largest pest-control database of its kind, noncrop habitat surrounding farm fields does affect multiple dimensions of pest control, but the actual responses of pests and enemies are highly variable across geographies and cropping systems. Because noncrop habitat often does not enhance biological control, more information about local farming contexts is needed before habitat conservation can be recommended as a viable pest-suppression strategy. Consequently, when pest control does not benefit from noncrop vegetation, farms will need to be carefully comanaged for competing conservation and production objectives.
Ecologists need data on animal–habitat associations in terrestrial and aquatic environments to design and implement effective conservation strategies. Habitat characteristics used in models typically incorporate (1) field data of limited spatial extent and/or (2) remote sensing data that do not characterize the vertical habitat structure. Remote sensing tools that directly characterize three‐dimensional (3‐D) habitat structure and that provide data relevant to organism–habitat interactions across a hierarchy of scales promise to improve our understanding of animal–habitat relationships. Laser altimetry, commonly called light detection and ranging (lidar), is a source of geospatial data that can provide fine‐grained information about the 3‐D structure of ecosystems across broad spatial extents. In this review, we present a brief overview of lidar technology, discuss recent applications of lidar data in investigations of animal–habitat relationships, and propose future applications of this technology to issues of broad species‐management and conservation interest.
The lack of maps depicting forest three-dimensional structure, particularly as pertaining to snags and understory shrub species distribution, is a major limitation for managing wildlife habitat in forests. Developing new techniques to remotely map snags and understory shrubs is therefore an important need. To address this, we first evaluated the use of LiDAR data for mapping the presence/absence of understory shrub species and different snag diameter classes important for birds (i.e. ≥15 cm, ≥ 25 cm and ≥ 30 cm) in a 30,000 ha mixed-conifer forest in Northern Idaho (USA). We used forest inventory plots, LiDAR-derived metrics, and the Random Forest algorithm to achieve classification accuracies of 83% for the understory shrubs and 86% to 88% for the different snag diameter classes. Second, we evaluated the use of LiDAR data for mapping wildlife habitat suitability using four avian species (one flycatcher and three woodpeckers) as case studies. For this, we integrated LiDAR-derived products of forest structure with available models of habitat suitability to derive a variety of species-habitat associations (and therefore habitat suitability patterns) across the study area. We found that the value of LiDAR resided in the ability to quantify 1) ecological variables that are known to influence the distribution of understory vegetation and snags, such as canopy cover, topography, and forest succession, and 2) direct structural metrics that indicate or suggest the presence of shrubs and snags, such as the percent of vegetation returns in the lower strata of the canopy (for the shrubs) and the vertical heterogeneity of the forest canopy (for the snags). When applied to wildlife habitat assessment, these new LiDAR-based maps refined habitat predictions in ways not previously attainable using other remote sensing technologies. This study highlights new value of LiDAR in characterizing key forest structure components important for wildlife, and warrants further applications to other forested environments and wildlife species.
Capturing and quantifying the world in three dimensions (x,y,z) using light detection and ranging (lidar) technology drives fundamental advances in the Earth and Ecological Sciences (EES). However, additional lidar dimensions offer the possibility to transcend basic 3-D mapping capabilities, including i) the physical time (t) dimension from repeat lidar acquisition and ii) laser return intensity (LRI λ ) data
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.