Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70% more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78% of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75% of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties.
El artículo seleccionado no se encuentra disponible por ahora a texto completo por no haber sido facilitado todavía por el investigador a cargo del archivo del mismo.
Common bean (Phaseolus vulgaris L.) is the most important grain legume for human consumption and has a role in sustainable agriculture owing to its ability to fix atmospheric nitrogen. We assembled 473 Mb of the 587-Mb genome and genetically anchored 98% of this sequence in 11 chromosome-scale pseudomolecules. We compared the genome for the common bean against the soybean genome to find changes in soybean resulting from polyploidy. Using resequencing of 60 wild individuals and 100 landraces from the genetically differentiated Mesoamerican and Andean gene pools, we confirmed 2 independent domestications from genetic pools that diverged before human colonization. Less than 10% of the 74 Mb of sequence putatively involved in domestication was shared by the two domestication events. We identified a set of genes linked with increased leaf and seed size and combined these results with quantitative trait locus data from Mesoamerican cultivars. Genes affected by domestication may be useful for genomics-enabled crop improvement.
The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP.
New insights into other importantPublisher: NPG; Journal: Nature: Nature; Article Type: Biology letter DOI: 10.1038/nature06269Page 2 of 33 symbiotic functions including H 2 metabolism, CO 2 -reductive acetogenesis and N 2 fixation are also provided by this first system-wide gene analysis of a microbial community specialized towards plant lignocellulose degradation. Our results underscore how complex even a 1-μl environment can be.All known termite species form obligate, nutritional mutualisms with diverse gut microbial species found nowhere else in nature 3 . Despite nearly a century of study, however, science still has only a meagre understanding of the exact roles of the host and symbiotic microbiota in the complex processes of lignocellulose degradation and conversion. Especially conspicuous is our poor understanding of the hindgut communities of wood-feeding 'higher'termites, the most species-rich and abundant of all termite lineages 4 . Higher termites do not contain hindgut flagellate protozoa, which have long been known to be sources of cellulases and hemicellulases in the 'lower' termites. The host tissue of all wood-feeding termites is known to be the source of one cellulase, a single-domain glycohydrolase family 9 enzyme that is secreted and active in the anterior compartments of the gut tract 5 . Only in recent years has research provided support for a role of termite gut bacteria in the production of relevant hydrolytic enzymes. That evidence includes the observed tight attachment of bacteria to wood particles, the antibacterial sensitivity of particle-bound cellulase activity 2 , and the discovery of a gene encoding a novel endoxylanase (glycohydrolase family 11) from bacterial DNA harvested from the gut tract of a Nasutitermes species 6 . Here, in an effort to learn about gene-centred details relevant to the diverse roles of bacterial symbionts in these successful wood-degrading insects,we initiated a metagenomic analysis of a wood-feeding 'higher' termite hindgut community, performed a proteomic analysis with clarified gut fluid from the same sample, and examined a set of candidate enzymes identified during the course of the study for demonstrable cellulase activity.A nest of an arboreal species closely related to Nasutitermes ephratae and N. corniger ( Supplementary Fig. 1) was collected near Guápiles, Costa Rica. From worker specimens, luminal contents were sampled specifically from the largest hindgut compartment, the microbedense, microlitre-sized region alternatively known as the paunch or the third proctodeal segment (P3; Fig. 1a). In the interest of interpretive clarity, we specifically excluded sampling from and analysis of the microbiota attached to the P3 epithelium and the other distinct microbial communities associated with the other hindgut compartments.Publisher: NPG; Journal: Nature: Nature; Article Type: Biology letter DOI: 10.1038/nature06269Page 3 of 33Total community DNA from pooled P3 luminal contents was purified, cloned and sequenced. About 71 million base pairs of Sang...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.