Focal and segmental glomerulosclerosis (FSGS) is a histological pattern frequently found in patients with nephrotic syndrome that often progress to end-stage kidney disease. The initial step in development of this histologically defined entity is injury and ultimately depletion of podocytes, highly arborized interdigitating cells on the glomerular capillaries with important function for the glomerular filtration barrier. Since there are still no causal therapeutic options, animal models are needed to develop new treatment strategies. Here, we present an FSGS-like model in zebrafish larvae, an eligible vertebrate model for kidney research. In a transgenic zebrafish strain, podocytes were depleted, and the glomerular response was investigated by histological and morphometrical analysis combined with immunofluorescence staining and ultrastructural analysis by transmission electron microscopy. By intravenous injection of fluorescent high-molecular weight dextran, we confirmed leakage of the size selective filtration barrier. Additionally, we observed severe podocyte foot process effacement of remaining podocytes, activation of proximal tubule-like parietal epithelial cells identified by ultrastructural cytomorphology, and expression of proximal tubule markers. These activated cells deposited extracellular matrix on the glomerular tuft which are all hallmarks of FSGS. Our findings indicate that glomerular response to podocyte depletion in larval zebrafish resembles human FSGS in several important characteristics. Therefore, this model will help to investigate the disease development and the effects of potential drugs in a living organism.
Background and Aims Although focal and segmental glomerulosclerosis (FSGS) has been in the scientific focus for many years, it is still a massive burden for patients with no causal therapeutic option. In FSGS, glomerular podocytes are injured, parietal epithelial cells (PECs) are activated and engage in the formation of cellular lesions leading to progressive glomerular scarring. Therefore, novel drug-screening assays are needed. Unfortunately, simple cellular in vitro-based screening assays are not ideal as glomerular architecture and crosstalk between glomerular cells is insufficiently modelled. Therefore, reliable animal models are still required for drug development, which unfortunately are not ideal for high-throughput applications. To date, due to its size, easy maintenance and breeding, zebrafish larvae are the simplest vertebrate model that are used in high-content screenings. Until today, it was unclear whether zebrafish can be used as a model for human FSGS. We therefore aimed to investigate whether partial podocyte-depletion in larval zebrafish leads to formation of FSGS-like disease and if the model can be used for screening purposes. Method We used a transgenic zebrafish model of pharmacogenetic podocyte depletion: In the Tg(nphs2:GAL4), Tg(UAS:Eco.nfsb-mCherry) strain, podocytes express the bacterial nitroreductase under control of the podocin promotor and can be dose-dependently ablated upon administration of metronidazole. Proteinuria was quantified using in vivo confocal laser scanning microscopy of intravenously administered high-molecular-weight fluorescent dextran. Plastic-embedded larvae where histologically and morphometrically assessed using HE, PAS and Jone’s silver staining after metronidazole washout. Glomerular ultrastructure was assessed using transmission electron microscopy of ultrathin sections. Immunofluorescence staining was carried out on kryosections to investigate extracellular matrix deposition (collagen-1, laminin), cellular proliferation (pcna) as well as parietal cell origin and activation (pax2a). Results To partially deplete podocytes, larvae where treated with 80 µM metronidazole from 4-6 days post fertilization, so that a subset of podocytes was depleted. In contrast to controls, podocyte-depleted larvae developed severe whole-body edema (Fig. A). Dynamic in vivo imaging of intravascular 500 kDa fluorescent dextran revealed massive leakage of the glomerular filtration barrier. Ultrastructural and immunofluorescent evaluation showed broad foot process effacement of remaining podocytes (Fig. D) and massive decrease of the slit diaphragm component podocin. Moreover, we found numerous sub-podocyte space pseudocysts (asterisk in Fig. D), microvillous transformation and formation of podocytic tight junctions as well as parietovisceral adhesions of the two layers of Bowman’s capsule. Parietal epithelial cells where activated, changed their phenotype towards a cuboidal shape, began to proliferate as demonstrated by pcna immunofluorescence and where recruited to cellular lesions on the glomerular tuft as demonstrated by the presence of cuboidal pax2a+ cells on the glomerular tuft (arrowheads Fig. B). Moreover, we found significant extracellular matrix deposition by the pax2a+ cells as demonstrated by Jone’s silver staining and laminin immunofluorescence (Fig. C). Conclusion Herein we show that upon podocyte-depletion, zebrafish larvae develop important functional and morphological features of human FSGS such as severe proteinuria and edema, podocyte foot process effacement, activation of parietal epithelial cells which contribute to cellular lesions and deposit extracellular matrix on the glomerular tuft. We conclude that this model resembles the human disease in important features and therefore propose its applicability for a high-throughput drug screening assay for FSGS.
Although FSGS has been in the scientific focus for many years, it is still a massive burden for patients with no causal therapeutic option. In FSGS, podocytes are injured, parietal epithelial cells (PECs) are activated and engage in the formation of cellular lesions leading to progressive glomerular scarring. Herein we show that podocyte-depleted zebrafish larvae develop acute proteinuria, severe foot process effacement and activate PECs which create cellular lesions and deposit extracellular matrix on the glomerular tuft. We therefore propose that this model shows features of human FSGS and show its applicability for a high-throughput drug screening assay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.