Key Points:• ECOSTRESS is a state-of-the-art combination of thermal bands, spatial and temporal resolutions, and measurement accuracy and precision • Data from 82 eddy covariance sites were coalesced concurrently with the first year of ECOSTRESS for Stage 1 validation • Clear-sky ET from ECOSTRESS compared well against a wide range of eddy Abstract The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) was launched to the International Space Station on 29 June 2018 by the National Aeronautics and Space Administration (NASA). The primary science focus of ECOSTRESS is centered on evapotranspiration (ET), which is produced as Level-3 (L3) latent heat flux (LE) data products. These data are generated from the Level-2 land surface temperature and emissivity product (L2_LSTE), in conjunction with ancillary surface and atmospheric data. Here, we provide the first validation (Stage 1, preliminary) of the global ECOSTRESS clear-sky ET product (L3_ET_PT-JPL, Version 6.0) against LE measurements at 82 eddy covariance sites around the world. Overall, the ECOSTRESS ET product performs well against the site measurements (clear-sky instantaneous/time of overpass: r 2 = 0.88; overall bias = 8%; normalized root-mean-square error, RMSE = 6%). ET uncertainty was generally consistent across climate zones, biome types, and times of day (ECOSTRESS samples the diurnal cycle), though temperate sites are overrepresented. The 70-m-high spatial resolution of ECOSTRESS improved correlations by 85%, and RMSE by 62%, relative to 1-km pixels. This paper serves as a reference for the ECOSTRESS L3 ET accuracy and Stage 1 validation status for subsequent science that follows using these data.
Determining the intrinsic dimension of a hyperspectral image is an important step in the spectral unmixing process and under- or overestimation of this number may lead to incorrect unmixing in unsupervised methods. In this paper, we discuss a new method for determining the intrinsic dimension using recent advances in random matrix theory. This method is entirely unsupervised, free from any user-determined parameters and allows spectrally correlated noise in the data. Robustness tests are run on synthetic data, to determine how the results were affected by noise levels, noise variability, noise approximation, and spectral characteristics of the endmembers. Success rates are determined for many different synthetic images, and the method is tested on two pairs of real images, namely a Cuprite scene taken from Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) and SpecTIR sensors, and a Lunar Lakes scene taken from AVIRIS and Hyperion, with good results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.