Optical microcavities confine light to small volumes by resonant recirculation. Devices based on optical microcavities are already indispensable for a wide range of applications and studies. For example, microcavities made of active III-V semiconductor materials control laser emission spectra to enable long-distance transmission of data over optical fibres; they also ensure narrow spot-size laser read/write beams in CD and DVD players. In quantum optical devices, microcavities can coax atoms or quantum dots to emit spontaneous photons in a desired direction or can provide an environment where dissipative mechanisms such as spontaneous emission are overcome so that quantum entanglement of radiation and matter is possible. Applications of these remarkable devices are as diverse as their geometrical and resonant properties.
The coupling of optical and mechanical degrees of freedom is the underlying principle of many techniques to measure mechanical displacement, from macroscale gravitational wave detectors to microscale cantilevers used in scanning probe microscopy. Recent experiments have reached a regime where the back-action of photons caused by radiation pressure can influence the optomechanical dynamics, giving rise to a host of long-anticipated phenomena. Here we review these developments and discuss the opportunities for innovative technology as well as for fundamental science.
The circulation of light within dielectric volumes enables storage of optical power near specific resonant frequencies and is important in a wide range of fields including cavity quantum electrodynamics, photonics, biosensing and nonlinear optics. Optical trajectories occur near the interface of the volume with its surroundings, making their performance strongly dependent upon interface quality. With a nearly atomic-scale surface finish, surface-tension-induced microcavities such as liquid droplets or spheres are superior to all other dielectric microresonant structures when comparing photon lifetime or, equivalently, cavity Q factor. Despite these advantageous properties, the physical characteristics of such systems are not easily controlled during fabrication. It is known that wafer-based processing of resonators can achieve parallel processing and control, as well as integration with other functions. However, such resonators-on-a-chip suffer from Q factors that are many orders of magnitude lower than for surface-tension-induced microcavities, making them unsuitable for ultra-high-Q experiments. Here we demonstrate a process for producing silica toroid-shaped microresonators-on-a-chip with Q factors in excess of 100 million using a combination of lithography, dry etching and a selective reflow process. Such a high Q value was previously attainable only by droplets or microspheres and represents an improvement of nearly four orders of magnitude over previous chip-based resonators.
I. MEASURED AND SIMULATED PROPERTIES OF THE OPTOMECHANICAL CRYSTAL NANOBEAM RESONATOR Table S1 summarizes the properties of the breathing mechanical modes. Measured values are denoted with a tilde. The necessary RF amplitudes and linewidths are extracted from the spectra of Fig. 3c using a nonlinear least squares fit with linear background and a sum of as many Lorentzian functions as are visible in the spectrum. Simulated values are calculated using methods described below. Fig. 3c of main text) and dividing by the m eff from the model. The superscript, n, in n L OM , indicates coupling of that mechanical mode to the nth optical mode (see Fig. 1b of main text). See §V F for discussion on modeling Q m .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.