IMPORTANCE Whole-genome sequencing (WGS) is increasingly applied in clinical medicine and is expected to uncover clinically significant findings regardless of sequencing indication. OBJECTIVES To examine coverage and concordance of clinically relevant genetic variation provided by WGS technologies; to quantitate inherited disease risk and pharmacogenomic findings in WGS data and resources required for their discovery and interpretation; and to evaluate clinical action prompted by WGS findings. DESIGN, SETTING, AND PARTICIPANTS An exploratory study of 12 adult participants recruited at Stanford University Medical Center who underwent WGS between November 2011 and March 2012. A multidisciplinary team reviewed all potentially reportable genetic findings. Five physicians proposed initial clinical follow-up based on the genetic findings. MAIN OUTCOMES AND MEASURES Genome coverage and sequencing platform concordance in different categories of genetic disease risk, person-hours spent curating candidate disease-risk variants, interpretation agreement between trained curators and disease genetics databases, burden of inherited disease risk and pharmacogenomic findings, and burden and interrater agreement of proposed clinical follow-up. RESULTS Depending on sequencing platform, 10% to 19% of inherited disease genes were not covered to accepted standards for single nucleotide variant discovery. Genotype concordance was high for previously described single nucleotide genetic variants (99%-100%) but low for small insertion/deletion variants (53%-59%). Curation of 90 to 127 genetic variants in each participant required a median of 54 minutes (range, 5-223 minutes) per genetic variant, resulted in moderate classification agreement between professionals (Gross κ, 0.52; 95%CI, 0.40-0.64), and reclassified 69%of genetic variants cataloged as disease causing in mutation databases to variants of uncertain or lesser significance. Two to 6 personal disease-risk findings were discovered in each participant, including 1 frameshift deletion in the BRCA1 gene implicated in hereditary breast and ovarian cancer. Physician review of sequencing findings prompted consideration of a median of 1 to 3 initial diagnostic tests and referrals per participant, with fair interrater agreement about the suitability of WGS findings for clinical follow-up (Fleiss κ, 0.24; P < 001). CONCLUSIONS AND RELEVANCE In this exploratory study of 12 volunteer adults, the use of WGS was associated with incomplete coverage of inherited disease genes, low reproducibility of detection of genetic variation with the highest potential clinical effects, and uncertainty about clinically reportable findings. In certain cases, WGS will identify clinically actionable genetic variants warranting early medical intervention. These issues should be considered when determining the role of WGS in clinical medicine.
Purpose Multiple-gene sequencing is entering practice, but its clinical value is unknown. We evaluated the performance of a customized germline-DNA sequencing panel for cancer-risk assessment in a representative clinical sample. Methods Patients referred for clinical BRCA1/2 testing from 2002 to 2012 were invited to donate a research blood sample. Samples were frozen at −80° C, and DNA was extracted from them after 1 to 10 years. The entire coding region, exon-intron boundaries, and all known pathogenic variants in other regions were sequenced for 42 genes that had cancer risk associations. Potentially actionable results were disclosed to participants. Results In total, 198 women participated in the study: 174 had breast cancer and 57 carried germline BRCA1/2 mutations. BRCA1/2 analysis was fully concordant with prior testing. Sixteen pathogenic variants were identified in ATM, BLM, CDH1, CDKN2A, MUTYH, MLH1, NBN, PRSS1, and SLX4 among 141 women without BRCA1/2 mutations. Fourteen participants carried 15 pathogenic variants, warranting a possible change in care; they were invited for targeted screening recommendations, enabling early detection and removal of a tubular adenoma by colonoscopy. Participants carried an average of 2.1 variants of uncertain significance among 42 genes. Conclusion Among women testing negative for BRCA1/2 mutations, multiple-gene sequencing identified 16 potentially pathogenic mutations in other genes (11.4%; 95% CI, 7.0% to 17.7%), of which 15 (10.6%; 95% CI, 6.5% to 16.9%) prompted consideration of a change in care, enabling early detection of a precancerous colon polyp. Additional studies are required to quantify the penetrance of identified mutations and determine clinical utility. However, these results suggest that multiple-gene sequencing may benefit appropriately selected patients.
PurposeWe examined racial/ethnic differences in the usage and results of germ-line multiple-gene sequencing (MGS) panels to evaluate hereditary cancer risk.MethodsWe collected genetic testing results and clinical information from 1,483 patients who underwent MGS at Stanford University between 1 January 2013 and 31 December 2015.ResultsAsians and Hispanics presented for MGS at younger ages than whites (48 and 47 vs. 55; P = 5E-16 and 5E-14). Across all panels, the rate of pathogenic variants (15%) did not differ significantly between racial groups. Rates by gene did differ: in particular, a higher percentage of whites than nonwhites carried pathogenic CHEK2 variants (3.8% vs. 1.0%; P = 0.002). The rate of a variant of uncertain significance (VUS) result was higher in nonwhites than whites (36% vs. 27%; P = 2E-4). The probability of a VUS increased with increasing number of genes tested; this effect was more pronounced for nonwhites than for whites (1.1% absolute difference in VUS rates testing BRCA1/2 vs. 8% testing 13 genes vs. 14% testing 28 genes), worsening the disparity.ConclusionIn this diverse cohort undergoing MGS testing, pathogenic variant rates were similar between racial/ethnic groups. By contrast, VUS results were more frequent among nonwhites, with potential significance for the impact of MGS testing by race/ethnicity.
In cascade testing, genetic testing for an identified familial pathogenic variant extends to disease-free relatives to allow genetically targeted disease prevention. We evaluated the results of an online initiative in which carriers of 1 of 30 cancer-associated genes, or their first-degree relatives, could offer low-cost testing to at-risk first-degree relatives. In the first year, 1101 applicants invited 2280 first-degree relatives to undergo genetic testing. Of invited relatives, 47.5% (95% confidence interval [CI] = 45.5 to 49.6%) underwent genetic testing, and 12.0% (95% CI = 9.2 to 14.8%) who tested positive continued the cascade by inviting additional relatives to test. Of tested relatives, 4.9% (95% CI = 3.8 to 6.1%) had a pathogenic variant in a different gene from the known familial one, and 16.8% (95% CI = 14.7 to 18.8%) had a variant of uncertain significance. These results suggest that an online, low-cost program is an effective approach to implementing cascade testing, and that up to 5% of the general population may carry a pathogenic variant in 1 of 30 cancer-associated genes.
Hereditary diffuse gastric cancer is a rare autosomal dominant cancer susceptibility syndrome caused by germline E-cadherin (CDH1) mutations in 40% of cases with a high degree of penetrance. Screening endoscopy has not been useful in identifying early cancer, in part owing to conflicting data concerning site(s) of involvement in the stomach and the lack of endoscopically detectable pathology. Risk-reducing total gastrectomy specimens from 8 asymptomatic adults with germline mutations in the CDH1 gene (3 different pedigrees) were studied using a sequential serial sectioning protocol with submission of the entire stomach for histologic analysis. The presence, size, and distribution of signet ring cell clusters were determined for each section and geographic maps of the invasive foci were constructed and compared with gastrectomy specimens from patients with germline E-cadherin mutation and symptomatic gastric cancer. All but 1 of the asymptomatic patients with germline mutations in the CDH1 gene had negative endoscopic screening. All risk-reducing gastrectomy specimens were macroscopically normal. All contained multiple foci (mean, 10.9) of microscopic intramucosal signet ring cell carcinoma confined to the superficial gastric mucosa; no invasion of submucosa was identified. In situ carcinoma was present in 6/8 cases. The majority of signet ring foci were located in the proximal one third of the stomach, most within oxyntic-type mucosa. The number and size of foci were not related to age, but there was a trend toward more severe disease burden in women. Stomachs from the symptomatic group of patients with germline CDH1 mutations exhibited infiltrative foci with higher Ki-67 labeling that extended well beyond the superficial mucosa. In addition, while superficial signet ring cancer exhibited decreased or absent E-cadherin and beta-catenin protein expression in all cases studied, deeply invasive signet ring cancer showed reversion to E-cadherin and beta-catenin protein expression in a subset of mutation carriers. Our study indicates that superficial intramucosal signet ring carcinoma, although widespread, is predominantly located in the proximal one third of the stomach in patients with E-cadherin gene mutations. The observed site predilection suggests a possible role for geographically targeted endoscopic surveillance biopsy in patients who elect to delay surgical intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.