Narcolepsy is a disabling sleep disorder affecting humans and animals. It is characterized by daytime sleepiness, cataplexy, and striking transitions from wakefulness into rapid eye movement (REM) sleep. In this study, we used positional cloning to identify an autosomal recessive mutation responsible for this sleep disorder in a well-established canine model. We have determined that canine narcolepsy is caused by disruption of the hypocretin (orexin) receptor 2 gene (Hcrtr2). This result identifies hypocretins as major sleep-modulating neurotransmitters and opens novel potential therapeutic approaches for narcoleptic patients.
We explored the role of hypocretins in human narcolepsy through histopathology of six narcolepsy brains and mutation screening of Hcrt, Hcrtr1 and Hcrtr2 in 74 patients of various human leukocyte antigen and family history status. One Hcrt mutation, impairing peptide trafficking and processing, was found in a single case with early onset narcolepsy. In situ hybridization of the perifornical area and peptide radioimmunoassays indicated global loss of hypocretins, without gliosis or signs of inflammation in all human cases examined. Although hypocretin loci do not contribute significantly to genetic predisposition, most cases of human narcolepsy are associated with a deficient hypocretin system.
Human narcolepsy-cataplexy, a sleep disorder associated with a centrally mediated hypocretin (orexin) deficiency, is tightly associated with HLA-DQB1*0602. Few studies have investigated the influence that additional HLA class II alleles have on susceptibility to this disease. In this work, 1,087 control subjects and 420 narcoleptic subjects with cataplexy, from three ethnic groups, were HLA typed, and the effects of HLA-DRB1, -DQA1, and -DQB1 were analyzed. As reported elsewhere, almost all narcoleptic subjects were positive for both HLA-DQA1*0102 and -DQB1*0602. A strong predisposing effect was observed in DQB1*0602 homozygotes, across all ethnic groups. Relative risks for narcolepsy were next calculated for heterozygous DQB1*0602/other HLA class II allelic combinations. Nine HLA class II alleles carried in trans with DQB1*0602 were found to influence disease predisposition. Significantly higher relative risks were observed for heterozygote combinations including DQB1*0301, DQA1*06, DRB1*04, DRB1*08, DRB1*11, and DRB1*12. Three alleles-DQB1*0601, DQB1*0501, and DQA1*01 (non-DQA1*0102)-were found to be protective. The genetic contribution of HLA-DQ to narcolepsy susceptibility was also estimated by use of lambda statistics. Results indicate that complex HLA-DR and -DQ interactions contribute to the genetic predisposition to human narcolepsy but that additional susceptibility loci are also most likely involved. Together with the recent hypocretin discoveries, these findings are consistent with an immunologically mediated destruction of hypocretin-containing cells in human narcolepsy-cataplexy.
The effects of number of predictors, predictor intercorrelations, validity, and level of subgroup difference on composite validity, adverse impact ratios, and mean subgroup difference associated with various predictor composites, including and excluding a ' 'high impact'' ability measure, were assessed. The size of subgroup differences is substantially smaller when low-impact predictors are combined with a high-impact predictor, but hiring ratios for majority and minority groups still indicate a prima facie case of discrimination, using the fourth-fifths rule for most predictor-criterion combinations. However, the validity of a composite of alternate predictors and cognitive ability may exceed the validity of cognitive ability alone and reduce the size of subgroup differences.
Hypocretins (orexins) are hypothalamic neuropeptides involved in sleep and energy homeostasis. Hypocretin mutations produce narcolepsy in animal models. In humans, narcolepsy is rarely due to hypocretin mutations, but this system is deficient in the cerebrospinal fluid (CSF) and brain of a small number of patients. A recent study also indicates increased body mass index (BMI) in narcolepsy. The sensitivity of low CSF hypocretin was examined in 38 successive narcolepsy-cataplexy cases [36 human leukocyte antigen (HLA)-DQB1*0602-positive] and 34 matched controls (15 controls and 19 neurological patients). BMI and CSF leptin levels were also measured. Hypocretin-1 was measurable (169 to 376 pg/ml) in all controls. Levels were unaffected by freezing/thawing or prolonged storage and did not display any concentration gradient. Hypocretin-1 was dramatically decreased (<100 pg/ml) in 32 of 38 patients (all HLA-positive). Four patients had normal levels (2 HLA-negative). Two HLA-positive patients had high levels (609 and 637 pg/ml). CSF leptin and adjusted BMI were significantly higher in patients versus controls. We conclude that the hypocretin ligand is deficient in most cases of human narcolepsy, providing possible diagnostic applications. Increased BMI and leptin indicate altered energy homeostasis. Sleep and energy metabolism are likely to be functionally connected through the hypocretin system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.