THI4, a Saccharomyces cerevisiae gene originally identified as a result of transient expression in molasses medium and named MOL1 is regulated by thiamine. Using a THI4 promoter-lacZ fusion on a centromeric yeast vector, we have shown that the THI4 is completely repressed throughout batch culture by thiamine at a concentration around 1 microM, but shows high level constitutive expression in thiamine-free medium. The transient expression pattern observed in molasses medium can be mimicked by the addition of 0.15 microM-thiamine to defined minimal medium. Cells grown in thiamine-free medium have an intracellular thiamine concentration of around 9 pmol/10(7) cells. A low level (1 microM) of exogenous thiamine is completely sequestered from the medium within 30 min; intracellular thiamine concentrations rise rapidly, followed by a gradual decrease as a result of dilution during growth. A saturating extracellular level of thiamine leads to a maximal intracellular concentration of around 1600 pmol/10(7) cells, at which point the transport system is shut down. After transfer from repressing to non-repressing medium, THI4 becomes induced when the intracellular concentration of thiamine falls to 20 pmol/10(7) cells. A thi4::URA3 disruption strain is auxotrophic for thiamine, but can grow in the presence of hydroxyethyl thiazole, indicating that the gene product is involved in the biosynthetic pathway leading to the formation of the thiazole precursor of thiamine.
Many of the changes induced in yeast by sublethal yet stressful amounts of ethanol are the same as those resulting from sublethal heat stress. They include an inhibition of fermentation, increased induction of petites and stimulation of plasma membrane ATPase activity. Ethanol, at concentrations (&lo%, v/v) that affect growth and fermentation rates, is also a potent inducer of heat-shock proteins including those members of the Hsp7O protein family induced by heat shock. This induction occurs above a threshold level of about 4% ethanol, although different heat-shock proteins and heat-shock gene promoters are optimally induced at different higher ethanol levels. In addition ethanol ( 6 8 % ) causes the same two major changes to integral plasmamembrane protein composition that result from a sublethal heat stress, reduction in levels of the plasma membrane ATPase protein and acquisition of the plasma membrane heat-shock protein Hsp30.
The Saccharomyces cerevisiae gene PDC5 encodes the minor isoform of pyruvate decarboxylase (Pdc). In this work we show that expression of PDC5 but not that of PDC1, which encodes the major isoform, is repressed by thiamine. Hence, under thiamine limitation both PDC1 and PDC5 are expressed. PDC5 also becomes strongly expressed in a pdc1v v mutant. Twodimensional gel electrophoresis of whole protein extracts shows that thiamine limitation stimulates the production of THI gene products and of Pdc5p. Deletion of PDC1 only stimulates production of Pdc5p. We conclude that the stimulation of PDC5 expression in a pdc1v v mutant is not due to a response to thiamine limitation.z 1999 Federation of European Biochemical Societies.
Using a THI4–lacZ reporter gene, mutant strains have been isolated that display constitutive expression of thiamine genes in the presence of normally repressing levels of exogenous thiamine. In total, eight strains were isolated in which this derepressed expression on thiamine (Det−) phenotype was the result of single gene mutations. The Det− mutations of three of these strains were partially dominant in a heterozygous diploid configuration, whereas the other five were recessive. The partially dominant mutants DET1, DET12 and DET13, and the recessive mutant det2, all showed derepressed THI4–lacZ expression levels comparable to those of a fully induced normal strain. Use of other promoter–lacZ gene fusions revealed that these four mutants were pleiotropic; expression levels of all thiamine‐regulated genes tested were also derepressed. Genetic analysis of the four mutants suggested that det2 and DET13 were allelic, whereas the others were at different loci; these four mutations therefore represent three different genes. None of the mutations were allelic with THI80, mutations of which have previously been shown to confer derepression on thiamine‐regulated genes. Also, intracellular thiamine levels were close to normal and none of the four mutants excreted thiamine into the growth medium. All mutant strains were found to be prototrophic for thiamine and none of those tested were compromised for thiamine uptake. It is possible that some may be alleles of, or interact with, the activator gene THI3. Taken together, these results imply that DET1, det2, DET12 and DET13 represent new genes encoding negative regulators of thiamine‐repressed genes. Copyright © 2000 John Wiley & Sons, Ltd.
The THI1 gene of Saccharomyces cerevisiae has been identified and found to be allelic with the previously characterized gene ILV2 that encodes acetohydroxyacid synthase (AHAS). This enzyme catalyses the first step in the parallel biosyntheses of the branched-chain amino acids isoleucine and valine, using thiamin pyrophosphate (TPP) as a cofactor. The ilv2-thi1 allele encodes a functional AHAS enzyme with an altered dependence for the cofactor TPP resulting in the thiamin auxotrophic phenotype. Nucleotide sequence analysis and site-directed mutagenesis revealed that the thi1 mutation is a single base substitution which causes the conserved amino acid substitution D176E in the AHAS protein. This study therefore implicates aspartate 176 as another amino acid residue important either for the efficient binding of TPP by AHAS or for the functional stability of the holoenzyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.