bPenicillin binding proteins (PBPs) are responsible for synthesizing and modifying the bacterial cell wall, and in Escherichia coli the loss of several nonessential low-molecular-weight PBPs gives rise to abnormalities in cell shape and division. To determine whether these proteins help connect the flagellar basal body to the peptidoglycan wall, we surveyed a set of PBP mutants and found that motility in an agar migration assay was compromised by the simultaneous absence of four enzymes: PBP4, PBP5, PBP7, and AmpH. A wild-type copy of any one of these restored migration, and complementation depended on the integrity of the PBP active-site serine. However, the migration defect was caused by the absence of flagella instead of improper flagellar assembly. Migration was restored if the flhDC genes were overexpressed or if the rcsB or cpxR genes were deleted. Thus, migration was inhibited because the Rcs and Cpx stress response systems were induced in the absence of these four specific PBPs. Furthermore, in this situation Rcs induction depended on the presence of CpxR. The results imply that small changes in peptidoglycan structure are sufficient to activate these stress responses, suggesting that a specific cell wall fragment may be the signal being sensed. The fact that four PBPs must be inactivated may explain why large perturbations to the envelope are required to induce stress responses.
Exposure of fish to wastewater treatment works (WwTWs) effluents can result in reproductive anomalies consistent with exposure to estrogenic compounds. However, UK WwTWs effluents also contain compounds with androgen receptor activities which may contribute to reproductive dysfunction in fish. A toxicity identification and evaluation (TIE) approach was used to profile (anti)androgenic compounds in bile of fish exposed to two WwTWs effluents. Extracts of bile from exposed fish and effluent were fractionated by liquid chromatography and tested for (anti)androgenic activity using a yeast androgen receptor transcription screen (YAS). A number of bile fractions contained (anti)androgenic activity unique to the effluent-exposed fish. Some of these fractions contained di(chloromethyl)anthracene or dichlorophene, and these contaminants showed antagonistic activity in the YAS when tested as pure compounds. No androgenic activity was detected in the effluents, but TIE analysis of bile revealed a number of androgenic fractions which contained testosterone metabolites that were unique to effluent-exposed fish. This is the first work reported on the nature of some of the (anti)androgenic compounds that bioaccumulate in fish from WwTWs effluents and indicates that other contaminants, besides estrogenic substances, need to be considered for their potential to contribute to the disruption of reproductive system of fish in UK waters.
Cytochrome P450 2E1 (CYP2E1) is a microsomal enzyme that generates reactive oxygen species during its catalytic cycle. We previously found an important role for calcium in CYP2E1-potentiated injury in HepG2 cells. The possibility that CYP2E1 may oxidatively damage and inactivate the microsomal Ca 2+ -ATPase in intact liver cells was evaluated, in order to explain why calcium is elevated during CYP2E1 toxicity. Microsomes were isolated by differential centrifugation from two liver cells lines: E47 cells (HepG2 cells transfected with the pCI neo expression vector containing the human CYP2E1 cDNA, which overexpress active microsomal CYP2E1), and control C34 cells (HepG2 cells transfected with the pCI neo expression vector alone, which do not express significantly any cytochrome P450). The Ca 2+ -dependent ATPase activity was determined by measuring the accumulation of inorganic phosphate from ATP hydrolysis. CYP2E1 overexpression produced a 45% decrease in Ca 2+ -dependent ATPase activity (8.6 nmol Pi/min/mg protein in C34 microsomes vs 4.7 nmol Pi/min/mg prot in E47 microsomes). Saturation curves with Ca 2+ or ATP showed that CYP2E1 overexpression produced a decrease in V MAX but did not affect the KM for either Ca 2+ or ATP. The decrease in activity was not associated with a decrease in SERCA protein levels. The ATPdependent microsomal calcium uptake was evaluated by fluorimetry using fluo-3 as the fluorogenic probe. Calcium uptake rate in E47 microsomes was 28% lower than in C34 microsomes. Treatment of E47 cells with 2 mM N-acetylcysteine prevented the decrease in microsomal Ca 2+ ATPase found in E47 cells. These results suggest that CYP2E1 overexpression produces a decrease in microsomal Ca 2+ ATPase activity in HepG2 cells mediated by reactive oxygen species. This may contribute to elevated cytosolic calcium and to CYP2E1-potentiated injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.