UDP-galactose 4-epimerase (GALE) interconvertsUDP-galactose and UDP-glucose in the final step of the Leloir pathway. Unlike the Escherichia coli enzyme, human GALE (hGALE) also efficiently interconverts a larger pair of substrates: UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine. The basis of this differential substrate specificity has remained obscure. Recently, however, x-ray crystallographic data have both predicted essential active site residues and suggested that differential active site cleft volume may be a key factor in determining GALE substrate selectivity. We report here a direct test of this hypothesis. In brief, we have created four substituted alleles: S132A, Y157F, S132A/Y157F, and C307Y-hGALE. While the first three substitutions were predicted to disrupt catalytic activity, the fourth was predicted to reduce active site cleft volume, thereby limiting entry or rotation of the larger but not the smaller substrate. All four alleles were expressed in a null-background strain of Saccharomyces cerevisiae and characterized in terms of activity with regard to both UDP-galactose and UDP-N-acetylgalactosamine. The S132A/Y157F and C307Y-hGALE proteins were also overexpressed in Pichia pastoris and purified for analysis. In all forms tested, the Y157F, S132A, and Y157F/S132A-hGALE proteins each demonstrated a complete loss of activity with respect to both substrates. In contrast, the C307Y-hGALE demonstrated normal activity with respect to UDP-galactose but complete loss of activity with respect to UDP-N-acetylgalactosamine. Together, these results serve to validate the wild-type hGALE crystal structure and fully support the hypothesis that residue 307 acts as a gatekeeper mediating substrate access to the hGALE active site.
Iron regulatory proteins (IRP) modulate the use of mRNA-encoding proteins that are involved in the transport, storage and use of iron. Several new potential mRNA targets for IRP were recently identified: divalent metal transporter-1 (DMT-1) and ferroportin, which are critical regulators of iron absorption in the gut and of iron cycling between various tissues of the body. Although this may extend the reach of IRP to other processes that are important for maintaining body iron homeostasis, the extent to which IRP modulate other physiological processes that are altered in response to changes in iron availability is not clear. However, in the past several years, targets for IRP and IRP-like proteins were identified in eukaryotes and prokaryotes in the tricarboxylic acid (TCA) cycle and electron-transport chain. In mammals, this includes the mRNA that encodes the TCA-cycle enzyme mitochondrial aconitase (m-acon). Recent work established that m-acon expression is translationally regulated by iron in a manner that is strongly correlated with IRP RNA-binding activity. Interestingly, these studies also demonstrate that IRP regulate their mRNA targets in a hierarchical manner. The changes in m-acon synthesis and abundance in liver during iron deficiency fail to affect TCA-cycle capacity but are associated with a significant upregulation of mitochondrial export of radiolabeled citrate. We conclude that IRP are required for the regulation of physiological pathways that include but are not limited to iron metabolism, and as such, IRP are critical factors in the adaptive response to iron deficiency.
UDP-galactose 4-epimerase (GALE) catalyzes the final step in the Leloir pathway of galactose metabolism, interconverting UDP-galactose and UDP-glucose. Unlike its Escherichia coli counterpart, mammalian GALE also interconverts UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine. Considering the key roles played by all four of these UDP-sugars in glycosylation, human GALE therefore not only contributes to the Leloir pathway, but also functions as a gatekeeper overseeing the ratios of important substrate pools required for the synthesis of glycosylated macromolecules. Defects in human GALE result in the disorder epimerase-deficiency galactosemia. To explore the relationship among GALE activity, substrate specificity, metabolic balance, and galactose sensitivity in mammalian cells, we employed a previously described GALE-null line of Chinese hamster ovary cells, ldlD. Using a transfection protocol, we generated ldlD derivative cell lines that expressed different levels of wild-type human GALE or E. coli GALE and compared the phenotypes and metabolic profiles of these lines cultured in the presence versus absence of galactose. We found that GALE-null cells accumulated abnormally high levels of Gal-1-P and UDP-Gal and abnormally low levels of UDP-Glc and UDP-GlcNAc in the presence of galactose and that human GALE expression corrected each of these defects. Comparing the human GALE-and E. coli GALE-expressing cells, we found that although GALE activity toward both substrates was required to restore metabolic balance, UDPGalNAc activity was not required for cell proliferation in the presence of otherwise cytostatic concentrations of galactose. Finally, we found that uridine supplementation, which essentially corrected UDP-Glc and, to a lesser extent UDP-GlcNAc depletion, enabled ldlD cells to proliferate in the presence of galactose despite the continued accumulation of Gal-1-P and UDP-Gal. These data offer important insights into the mechanism of galactose sensitivity in epimerase-impaired cells and suggest a potential novel therapy for patients with epimerase-deficiency galactosemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.