Many marine fish and invertebrates show a dual life history where settled adults produce dispersing larvae. The planktonic nature of the early larval stages suggests a passive dispersal model where ocean currents would quickly cause panmixis over large spatial scales and prevent isolation of populations, a prerequisite for speciation. However, high biodiversity and species abundance in coral reefs contradict this panmixis hypothesis. Although ocean currents are a major force in larval dispersal, recent studies show far greater retention than predicted by advection models. We investigated the role of animal behavior in retention and homing of coral reef fish larvae resulting in two important discoveries: (i) Settling larvae are capable of olfactory discrimination and prefer the odor of their home reef, thereby demonstrating to us that nearby reefs smell different. (ii) Whereas one species showed panmixis as predicted from our advection model, another species showed significant genetic population substructure suggestive of strong homing. Thus, the smell of reefs could allow larvae to choose currents that return them to reefs in general and natal reefs in particular. As a consequence, reef populations can develop genetic differences that might lead to reproductive isolation.coral reef ͉ olfaction ͉ population genetics
Long-term (1 month) observations of waves and currents over a natural reef are presented which show a strong correlation between offshore rms incident wave height and cross-reef currents at subtidal frequencies. The energy spectrum of the cross-reef currents shows a significant peak at twice the semidiurnal tidal frequency, while the spectrum of sea surface elevation over the reef flat shows no corresponding peak. Furthermore, experimental results reported by Goutlay (1993) show setup over the reef occurs in the absence of a beach, and the cross-reef transport decreases with an increase in the sea surface slope across the reef fiat due to a n' increase in setup at the top of the reef face. Analytic solutions for flow forced by wave breaking over an idealized reef explain the above features of cross-reef flows in the absence of a beach. Through the surf zone on the reef face the cross-reef gradient in the radiation stress due to wave breaking is partitioned between balancing an offshore pres. sure gradient associated with setup over the reef and forcing a mean flow across the reef. Over the reef fiat, where the depth is constant, there is no forcing due to wave breaking and the flow is driven by a pressure gradient which results from the setup through the surf zone. The magnitude of the setup through the surf zone is such that the transport across the reef flat matches the transport through the surf zone which is forced by the gradient in the radiation stress. Solutions are presented for general reef geometry, defined by the reef width and slope of the seaward reef face, and incident wave forcing, defined by the depth at the breakpoint and the depth of water over the reef. As the depth over the reef goes to zero, the solutions converge to the plane beach solutions described by Longuet-Higgins and Stewart (1964), wave setup is maximized, and the cross-reef transport is zero. In other cases the relative magnitudes of the setup and the cross-reef transport depend on the geometry of the reef and the incident wave forcing.
BackgroundPopulation connectivity, which is essential for the persistence of benthic marine metapopulations, depends on how life history traits and the environment interact to influence larval production, dispersal and survival. Although we have made significant advances in our understanding of the spatial and temporal dynamics of these individual processes, developing an approach that integrates the entire population connectivity process from reproduction, through dispersal, and to the recruitment of individuals has been difficult.We present a population connectivity modelling framework and diagnostic approach for quantifying the impact of i) life histories, ii) demographics, iii) larval dispersal, and iv) the physical seascape, on the structure of connectivity and metapopulation dynamics. We illustrate this approach using the subtidal rocky reef ecosystem of Port Phillip Bay, were we provide a broadly-applicable framework of population connectivity and quantitative methodology for evaluating the relative importance of individual factors in determining local and system outcomes.ResultsThe spatial characteristics of marine population connectivity are primarily influenced by larval mortality, the duration of the pelagic larval stage, and the settlement competency characteristics, with significant variability imposed by the geographic setting and the timing of larval release. The relative influence and the direction and strength of the main effects were strongly consistent among 10 connectivity-based metrics.ConclusionsThese important intrinsic factors (mortality, length of the pelagic larval stage, and the extent of the precompetency window) and the spatial and temporal variability represent key research priorities for advancing our understanding of the connectivity process and metapopulation outcomes.Electronic supplementary materialThe online version of this article (doi:10.1186/s40462-015-0045-6) contains supplementary material, which is available to authorized users.
Post-settlement King George whiting Sillaginodes punctata were sampled every 3 to 4 d from mid-September to the end of October 1993, at 3 seagrass sites within Port Phillip Bay, Australia. The site closest to the entrance (St Leonards) showed short-lived pulses of recruits in low numbers. The site of intermediate distance into the bay (Grassy Point) showed a similar pattern; however, in this case there was a marked accumulation of recruits over time. In contrast, recruitment was low at the site furthest into the bay (Grand Scenlc), and the pattern was unlike the other sites. We simulated the transport of S punctata larvae into Port Phillip Bay over t h~s penod using 2-and 3-dimensional hydrodynamic and dlspersal models. A hlgh proportion (two-thirds) of the variation in recruitment at St Leonards and Grassy Point could be explained by 2 factors. the predicted arrival of larvae based on passlve transport by currents, and disturbance of individual seagrass sites by wave action. Patterns of recruitment at Grand Scenic, however, a site that was at the 11m1t of larval dlspersal into the bay, were unrelated to model predictions or environmental variables. The daily pattern of arrival of larvae to Port Phllllp Bay was estimated from recruits using a transition in otolith microstructure. The daily pattern of arrlval estimated for individuals collected from St Leonards was slgnlficantly correlated with westerly wind stress and residual sea level, and negatively correlated with barometnc pressure. It appears that strong westerly winds and low barometric pressure associated with the passage of weather systems lead to positive sea level anomalies in Port Phillip Bay, and the passive transport of larvae into the bay. Interannual variability in weather patterns would be expected to lead to interannual variability in larval supply to Port Phillip Bay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.