The purpose of this study was to determine the effect of trait anxiety and stressor intensity on arousal and motor performance during a pinch task. We examined the steadiness of a precision task in the presence and absence of an imposed stressor on subjects with moderate and low trait anxiety. Subjects with the 26 highest and 14 lowest anxiety scores were assigned to one of three groups: a control group (5 women, 5 men), a moderate-anxiety group (8 women, 8 men), or a low-anxiety group (7 women, 7 men). Subjects in the anxiety groups received electric shocks and experienced significant increases in cognitive and physiological arousal compared with baseline and control subjects, especially subjects in the moderate-anxiety group. Heart rate, systolic blood pressure, and electrodermal activity were elevated during the stressor, whereas diastolic blood pressure was unchanged. Cognitive and physiological arousal tended to increase with stressor intensity and was accompanied by changes in steadiness. Although steadiness was markedly reduced with the highest intensity of shock, the average electromyogram activity was unaffected by the stressor. These findings indicate that the increase in arousal and the impairment of steadiness increased with trait anxiety and with the intensity of the noxious stimulus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.