Gene expression in biofilms is dependent on bacterial responses to the local environmental conditions. Most techniques for studying bacterial gene expression in biofilms characterize average values across the entire population. Here, we describe the use of laser capture microdissection microscopy (LCMM) combined with multiplex quantitative real-time reverse transcriptase PCR (qRT-PCR) to isolate and quantify RNA transcripts from small groups of cells at spatially resolved sites within biofilms. The approach was first tested and analytical parameters were determined for Pseudomonas aeruginosa containing an isopropyl--D-thiogalactopyranoside-inducible gene for the green fluorescent protein (gfp). The results show that the amounts of gfp mRNA were greatest in the top zones of the biofilms, and that gfp mRNA levels correlated with the zone of active green fluorescent protein fluorescence. The method then was used to quantify transcripts from wild-type P. aeruginosa biofilms for a housekeeping gene, acpP; the 16S rRNA; and two genes regulated by quorum sensing, phzA1 and aprA. The results demonstrated that the amount of acpP mRNA was greatest in the top 30 m of the biofilm, with little or no mRNA for this gene at the base of the biofilms. In contrast, 16S rRNA amounts were relatively uniform throughout biofilm strata. Using this strategy, the RNA amounts of individual genes were determined, and therefore the results are dependent on both gene expression and the half-life of the transcripts. Therefore, the uniform amount of rRNA throughout the biofilms likely is due to the stability of the rRNA within ribosomes. The levels of aprA mRNA showed stratification, with the largest amounts in the upper 30-m zone of these biofilms. The results demonstrate that mRNA levels for individual genes are not uniformly distributed throughout biofilms but may vary by orders of magnitude over small distances. The LCMM/qRT-PCR technique can be used to resolve and quantify this RNA variability at high spatial resolution.
bEnhanced tolerance of biofilm-associated bacteria to antibiotic treatments is likely due to a combination of factors, including changes in cell physiology as bacteria adapt to biofilm growth and the inherent physiological heterogeneity of biofilm bacteria. In this study, a transcriptomics approach was used to identify genes differentially expressed during biofilm growth of Pseudomonas aeruginosa. These genes were tested for statistically significant overlap, with independently compiled gene lists corresponding to stress responses and other putative antibiotic-protective mechanisms. Among the gene groups tested were those associated with biofilm response to tobramycin or ciprofloxacin, drug efflux pumps, acyl homoserine lactone quorum sensing, osmotic shock, heat shock, hypoxia stress, and stationary-phase growth. Regulons associated with Anr-mediated hypoxia stress, RpoSregulated stationary-phase growth, and osmotic stress were significantly enriched in the set of genes induced in the biofilm. Mutant strains deficient in rpoS, relA and spoT, or anr were cultured in biofilms and challenged with ciprofloxacin and tobramycin. When challenged with ciprofloxacin, the mutant strain biofilms had 2.4-to 2.9-log reductions in viable cells compared to a 0.9-log reduction of the wild-type strain. Interestingly, none of the mutants exhibited a statistically significant alteration in tobramycin susceptibility compared to that with the wild-type biofilm. These results are consistent with a model in which multiple genes controlled by overlapping starvation or stress responses contribute to the protection of a P. aeruginosa biofilm from ciprofloxacin. A distinct and as yet undiscovered mechanism protects the biofilm bacteria from tobramycin.
Significance
The dormant subpopulations of
Pseudomonas aeruginosa
biofilms are linked to chronic infections because dormant cells tolerate antibiotic treatment and then repopulate the infections when conditions become favorable. Dormant cells must maintain cellular integrity, including preformed ribosomes, to resuscitate. The small-ribosome–binding proteins, ribosome modulation factor, and hibernation promoting factor (HPF) have evolved to maintain ribosomes in an inactive state. Using both population and single-cell–level studies, we show that HPF provides the primary mechanism used by
P. aeruginosa
to maintain ribosome integrity during dormancy, and that HPF is required for optimal
P. aeruginosa
resuscitation from dormancy. Preventing regrowth of the dormant subpopulation by targeting HPF may provide an effective means for eliminating the dormant subpopulations of
P. aeruginosa
infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.