Ocean acidification is projected to inhibit the biogenic production of calcium carbonate skeletons in marine organisms. Antarctic waters represent a natural environment in which to examine the long‐term effects of carbonate undersaturation on calcification in marine predators. King crabs (Decapoda: Anomura: Lithodidae), which currently inhabit the undersaturated environment of the continental slope off Antarctica, are potential invasives on the Antarctic shelf as oceanic temperatures rise. Here, we describe the chemical, physical, and mechanical properties of the exoskeleton of the deep‐water Antarctic lithodid Paralomis birsteini and compare our measurements with two decapod species from shallow water at lower latitudes, Callinectes sapidus (Brachyura: Portunidae) and Cancer borealis (Brachyura: Cancridae). In Paralomis birsteini, crabs deposit proportionally more calcium carbonate in their predatory chelae than their protective carapaces, compared with the other two crab species. When exoskeleton thickness and microhardness were compared between the chelae and carapace, the magnitude of the difference between these body regions was significantly greater in P. birsteini than in the other species tested. Hence, there appeared to be a greater disparity in P. birsteini in overall investment in calcium carbonate structures among regions of the exoskeleton. The imperatives of prey consumption and predator avoidance may be influencing the deposition of calcium to different parts of the exoskeleton in lithodids living in an environment undersaturated with respect to calcium carbonate.
Chromosome movements and licensing of synapsis must be tightly regulated during early meiosis to ensure accurate chromosome segregation and avoid aneuploidy, although how these steps are coordinated is not fully understood. Here we show that GRAS-1, the worm homolog of mammalian GRASP/Tamalin and CYTIP, coordinates early meiotic events with cytoskeletal forces outside the nucleus. GRAS-1 localizes close to the nuclear envelope (NE) in early prophase I and interacts with NE and cytoskeleton proteins. Delayed homologous chromosome pairing, synaptonemal complex (SC) assembly, and DNA double-strand break repair progression are partially rescued by the expression of human CYTIP in gras-1 mutants, supporting functional conservation. However, Tamalin, Cytip double knockout mice do not exhibit obvious fertility or meiotic defects, suggesting evolutionary differences between mammals. gras-1 mutants show accelerated chromosome movement during early prophase I, implicating GRAS-1 in regulating chromosome dynamics. GRAS-1-mediated regulation of chromosome movement is DHC-1-dependent, placing it acting within the LINC-controlled pathway, and depends on GRAS-1 phosphorylation at a C-terminal S/T cluster. We propose that GRAS-1 coordinates the early steps of homology search and licensing of SC assembly by regulating the pace of chromosome movement in early prophase I.
Chromosome movements and licensing of synapsis must be tightly regulated during early meiosis to ensure accurate chromosome segregation and avoid aneuploidy, although how these steps are coordinated is not fully understood. Here we show that GRAS-1, the worm homolog of mammalian GRASP/Tamalin and CYTIP, coordinates early meiotic events with cytoskeletal forces outside the nucleus. GRAS-1 localizes close to the nuclear envelope (NE) in early prophase I and interacts with NE and cytoskeleton proteins. Delayed homologous chromosome pairing, synaptonemal complex (SC) assembly, and DNA double-strand break repair progression are partially rescued by the expression of human CYTIP in gras-1 mutants, supporting functional conservation. However, Tamalin, Cytip double knockout mice do not exhibit obvious fertility or meiotic defects, suggesting evolutionary differences between mammals. gras-1 mutants show accelerated chromosome movement during early prophase I, implicating GRAS-1 in regulating chromosome dynamics. GRAS-1-mediated regulation of chromosome movement is DHC-1-dependent, placing it acting within the LINC-controlled pathway, and depends on GRAS-1 phosphorylation at a C-terminal S/T cluster. We propose that GRAS-1 serves as a scaffold for a multi-protein complex coordinating the early steps of homology search and licensing of SC assembly by regulating the pace of chromosome movement in early prophase I.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.