Tumor immunotherapy aims to break effector T-cell anergy and to block suppressive cell types and ligands allowing effector cells to exert tumor eradication. Previous reports demonstrate that cytotoxic T lymphocyte antigen-4 (CTLA-4)-blocking antibodies promote T-cell activation and render T effector cells resistant to T regulatory cells (Tregs) whereas programmed death receptor-1 (PD-1)/PD-L1 blockade results in loss of peripheral tolerance. Herein, we explored single or combined antibody blockade of CTLA-4 and PD-1 alone or combined with the toll-like receptor agonists CpG or bacillus Calmette-Guérin for treatment of murine experimental bladder cancer. In therapeutic studies, tumors were rejected by anti-CTLA-4 (aCTLA-4) while anti-PD-1 (aPD-1) suppressed tumor growth. The combination had no additive effect compared with aCTLA-4 alone. However, elevated levels of circulating CD107a expressing CD8 T cells were found in the aCTLA-4 plus aPD-1 group. In addition, levels of antinuclear antibodies correlated inversely with tumor size. Next, we combined CpG or bacillus Calmette-Guérin with aCTLA-4, aPD-1, or aPD-L1 and found that CpG in combination with aCTLA-4 or aPD-1 increased the survival of mice, with aPD-1 plus CpG being superior to either agent alone. CpG plus aCTLA-4 or aPD-1 increased the numbers of circulating tumor-specific CD107a expressing CD8 T cells as well as activated (CD25FoxP3-) CD4 splenocytes. Further, we investigated the numbers of Tregs in the tumor area of treated animals and detected decreased levels after aCTLA-4 or aPD-1 plus CpG therapy. Thus, the combination of CpG with CTLA-4 or PD-1 blockade improved long-term survival and led to increased levels of tumor-reactive T cells and reduced numbers of Tregs at the tumor site.
Phosphorothioate oligodeoxynucleotides can activate complement, and experimental murine studies have revealed differential effects upon simultaneous TLR stimulation and complement activation compared with either event alone. We set out to investigate the immune stimulatory effects of CpG 2006 in fresh non-anticoagulated human blood with or without presence of active complement. We also sought to elucidate the mechanism behind complement activation upon stimulation with phosphorothioate CpG 2006. In a human blood loop system, both backbone and sequence-specific effects by CpG were counteracted by selective inhibition of C3. Furthermore, DNA backbone-mediated CD40 and CD83 expression on monocytes and sequence-specific IL-6 and TNF production were reduced by complement inhibition. CpG-induced complement activation occurred via either the classical or the alternative pathway and deposits of both IgM and properdin, two activators of complement, were detected on CpG after incubation with EDTA plasma. Quartz crystal microbalance with dissipation monitoring demonstrated alternative pathway convertase build-up onto CpG as a likely pathway to initiate and sustain complement activation. Specific inhibition of C3 suppressed CpG 2006 uptake into monocytes indicating that C3 fragments are involved in CpG internalization. The interplay between complement and TLR9 signaling demonstrated herein warrants further investigation.
platelets from SLE patients. MS analysis revealed 32 proteins with ! 1.5-fold difference and a p-value of less than 0.05 (Abundance Ratio Adjusted). STAT1, ISG15, NMI and TRIM25 were among 19 proteins expressed at higher levels in small platelets and unbiased enrichments analyses showed a significant overrepresentation of proteins related to type I interferon signaling. Conclusions The increased mitochondrial depolarization in platelets from SLE patients is an indication but not conclusive evidence of increased platelet apoptosis. Interestingly, decreased sized platelets from SLE patients showed an up regulation of type I interferon related proteins, suggesting direct or indirect influence of IFN. This is a novel finding that may suggest that platelet size is related to IFN signaling. Further studies will be conducted to investigate the mechanistic and potential clinical role of this finding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.