This randomized clinical trial examines a decision support tool that provides lower back pain information and self-management recommendations that are specific to an individual’s characteristics, symptoms, and symptom progression.
BackgroundLow back pain (LBP) is a leading cause of disability worldwide. Most patients with LBP encountered in primary care settings have nonspecific LBP, that is, pain with an unknown pathoanatomical cause. Self-management in the form of physical activity and strength and flexibility exercises along with patient education constitute the core components of the management of nonspecific LBP. However, the adherence to a self-management program is challenging for most patients, especially without feedback and reinforcement. Here we outline a protocol for the design and implementation of a decision support system (DSS), selfBACK, to be used by patients themselves to promote self-management of LBP.ObjectiveThe main objective of the selfBACK project is to improve self-management of nonspecific LBP to prevent chronicity, recurrence and pain-related disability. This is achieved by utilizing computer technology to develop personalized self-management plans based on individual patient data.MethodsThe decision support is conveyed to patients via a mobile phone app in the form of advice for self-management. Case-based reasoning (CBR), a technology that utilizes knowledge about previous cases along with data about the current patient case, is used to tailor the advice to the current patient, enabling a patient-centered intervention based on what has and has not been successful in previous patient cases. The data source for the CBR system comprises initial patient data collected by a Web-based questionnaire, weekly patient reports (eg, symptom progression), and a physical activity-detecting wristband. The effectiveness of the selfBACK DSS will be evaluated in a multinational, randomized controlled trial (RCT), targeting care-seeking patients with nonspecific LBP. A process evaluation will be carried out as an integral part of the RCT to document the implementation and patient experiences with selfBACK.ResultsThe selfBACK project was launched in January 2016 and will run until the end of 2020. The final version of the selfBACK DSS will be completed in 2018. The RCT will commence in February 2019 with pain-related disability at 3 months as the primary outcome. The trial results will be reported according to the CONSORT statement and the extended CONSORT-EHEALTH checklist. Exploitation of the results will be ongoing throughout the project period based on a business plan developed by the selfBACK consortium. Tailored digital support has been proposed as a promising approach to improve self-management of chronic disease. However, tailoring self-management advice according to the needs, motivation, symptoms, and progress of individual patients is a challenging task. Here we outline a protocol for the design and implementation of a stand-alone DSS based on the CBR technology with the potential to improve self-management of nonspecific LBP.ConclusionsThe selfBACK project will provide learning regarding the implementation and effectiveness of an app-based DSS for patients with nonspecific LBP.Registered Report IdentifierRR1-10.2196/9379
Background: Very few of the publicly available apps directed towards self-management of low back pain (LBP) have been rigorously tested and their theoretical underpinnings seldom described. The selfBACK app was developed in collaboration with end-users and clinicians and its content is supported by best evidence on selfmanagement of LBP. The objectives of this pilot study were to investigate the basis for recruitment and screening procedures for the subsequent randomized controlled trial (RCT), to test the inclusion process in relation to questionnaires and app installation, and finally to investigate the change in primary outcome over time. Methods: This single-armed pilot study enrolled 51 participants who had sought help for LBP of any duration from primary care (physiotherapy, chiropractic, or general practice) within the past 8 weeks. Participants were screened for eligibility using the PROMIS-Physical-Function-4a questionnaire. Participants were asked to use the selfBACK app for 6 weeks. The app provided weekly tailored self-management plans targeting physical activity, strength and flexibility exercises, and education. The construction of the self-management plans was achieved using case-based reasoning (CBR) methodology to capture and reuse information from previous successful cases. Participants completed the primary outcome pain-related disability (Roland-Morris Disability Questionnaire [RMDQ]) at baseline and 6-week follow-up along with a range of secondary outcomes. Metrics of app use were collected throughout the intervention period. Results: Follow-up data at 6 weeks was obtained for 43 participants. The recruitment procedures were feasible, and the number needed to screen was acceptable (i.e., 1.6:1). The screening questionnaire was altered during the pilot study. The inclusion process, answering questionnaires and app installation, were feasible. The primary outcome (RMDQ) improved from 8.6 (SD 5.1) at baseline to 5.9 (SD 4.0) at 6-week follow-up (change score 1.8, 95% CI 0.7 to 2.9). Participants spent on average 134 min (range 0-889 min) using the app during the 6-week period.
BackgroundLow back pain (LBP) is prevalent across all social classes, in all age groups, and across industrialized and developing countries. From a global perspective, LBP is considered the leading cause of disability and negatively impacts everyday life and well-being. Self-management is a recommended first-line treatment, and mobile apps are a promising platform to support self-management of conditions like LBP. In the selfBACK project, we have developed a digital decision support system made available for the user via an app intended to support tailored self-management of nonspecific LBP.ObjectiveThe trial aims to evaluate the effectiveness of using the selfBACK app to support self-management in addition to usual care (intervention group) versus usual care only (control group) in people with nonspecific LBP.MethodsThis is a single-blinded, randomized controlled trial (RCT) with two parallel arms. The selfBACK app provides tailored self-management plans consisting of advice on physical activity, physical exercises, and educational content. Tailoring of plans is achieved by using case-based reasoning (CBR) methodology, which is a branch of artificial intelligence. The core of the CBR methodology is to use data about the current case (participant) along with knowledge about previous and similar cases to tailor the self-management plan to the current case. This enables a person-centered intervention based on what has and has not been successful in previous cases. Participants in the RCT are people with LBP who consulted a health care professional in primary care within the preceding 8 weeks. Participants are randomized to using the selfBACK app in addition to usual care versus usual care only. We aim to include a total of 350 participants (175 participants in each arm). Outcomes are collected at baseline, 6 weeks, and 3, 6, and 9 months. The primary end point is difference in pain-related disability between the intervention group and the control group assessed by the Roland-Morris Disability Questionnaire at 3 months.ResultsThe trial opened for recruitment in February 2019. Data collection is expected to be complete by fall 2020, and the results for the primary outcome are expected to be published in fall 2020.ConclusionsThis RCT will provide insights regarding the benefits of supporting tailored self-management of LBP through an app available at times convenient for the user. If successful, the intervention has the potential to become a model for the provision of tailored self-management support to people with nonspecific LBP and inform future interventions for other painful musculoskeletal conditions.Trial RegistrationClinicalTrial.gov NCT03798288; https://clinicaltrials.gov/ct2/show/NCT03798288International Registered Report Identifier (IRRID)DERR1-10.2196/14720
Existing accelerometer-based human activity recognition (HAR) benchmark datasets that were recorded during free living suffer from non-fixed sensor placement, the usage of only one sensor, and unreliable annotations. We make two contributions in this work. First, we present the publicly available Human Activity Recognition Trondheim dataset (HARTH). Twenty-two participants were recorded for 90 to 120 min during their regular working hours using two three-axial accelerometers, attached to the thigh and lower back, and a chest-mounted camera. Experts annotated the data independently using the camera’s video signal and achieved high inter-rater agreement (Fleiss’ Kappa =0.96). They labeled twelve activities. The second contribution of this paper is the training of seven different baseline machine learning models for HAR on our dataset. We used a support vector machine, k-nearest neighbor, random forest, extreme gradient boost, convolutional neural network, bidirectional long short-term memory, and convolutional neural network with multi-resolution blocks. The support vector machine achieved the best results with an F1-score of 0.81 (standard deviation: ±0.18), recall of 0.85±0.13, and precision of 0.79±0.22 in a leave-one-subject-out cross-validation. Our highly professional recordings and annotations provide a promising benchmark dataset for researchers to develop innovative machine learning approaches for precise HAR in free living.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.