Neural networks enjoy widespread success in both research and industry and, with the advent of quantum technology, it is a crucial challenge to design quantum neural networks for fully quantum learning tasks. Here we propose a truly quantum analogue of classical neurons, which form quantum feedforward neural networks capable of universal quantum computation. We describe the efficient training of these networks using the fidelity as a cost function, providing both classical and efficient quantum implementations. Our method allows for fast optimisation with reduced memory requirements: the number of qudits required scales with only the width, allowing deep-network optimisation. We benchmark our proposal for the quantum task of learning an unknown unitary and find remarkable generalisation behaviour and a striking robustness to noisy training data.
Graph structures are ubiquitous throughout the natural sciences. Here we consider graph-structured quantum data and describe how to carry out its quantum machine learning via quantum neural networks. In particular, we consider training data in the form of pairs of input and output quantum states associated with the vertices of a graph, together with edges encoding correlations between the vertices. We explain how to systematically exploit this additional graph structure to improve quantum learning algorithms. These algorithms are numerically simulated and exhibit excellent learning behavior. Scalable quantum implementations of the learning procedures are likely feasible on the next generation of quantum computing devices.
Contextuality describes the nontrivial dependence of measurement outcomes on particular choices of jointly measurable observables. In this work we review and generalize the bundle diagram representation introduced in [S. Abramsky et al.] in order to graphically demonstrate the contextuality of diverse empirical models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.