Work in different organisms revealed that the vasa gene product is essential for germline specification. Here, we describe the asymmetric segregation of zebrafish vasa RNA, which distinguishes germ cell precursors from somatic cells in cleavage stage embryos. At the late blastula (sphere) stage, vasa mRNA segregation changes from asymmetric to symmetric, a process that precedes primordial germ cell proliferation and perinuclear localization of Vasa protein. Analysis of hybrid fish between Danio rerio and Danio feegradei demonstrates that zygotic vasa transcription is initiated shortly after the loss of unequal vasa mRNA segregation. Blocking DNA replication indicates that the change in vasa RNA segregation is dependent on a maternal program. Asymmetric segregation is impaired in embryos mutant for the maternal effect gene nebel. Furthermore, ultrastructural analysis of vasa RNA particles reveals that vasa RNA, but not Vasa protein, localizes to a subcellular structure that resembles nuage, a germ plasm organelle. The structure is initially associated with the actin cortex, and subsequent aggregation is inhibited by actin depolymerization. Later, the structure is found in close proximity of microtubules. We previously showed that its translocation to the distal furrows is microtubule dependent. We propose that vasa RNA but not Vasa protein is a component of the zebrafish germ plasm. Triggered by maternal signals, the pattern of germ plasm segregation changes, which results in the expression of primordial germ cell–specific genes such as vasa and, consequently, in germline fate commitment.
Localization of bicoid (bcd) messenger RNA to the anterior pole of the Drosophila oocyte requires the exuperantia ( exu), swallow (swa) and staufen (stau) genes. We show here that Swa protein transiently co-localizes with bcd RNA in mid-oogenesis. Swa also localizes to the anterior pole of the oocyte in the absence of bcd RNA. This localization does not require Exu, but depends on intact microtubules. In mutant ovaries with duplicated polarity of microtubules, Swa and bcd RNA are ectopically localized at the posterior pole, as well as being present at the anterior pole. We identify dynein light chain-1 (Ddlc-1), a component of the minus-end-directed microtubule motor cytoplasmic dynein, as a Swa-binding protein. We propose that Swa acts as an adaptor for the dynein complex and thereby enables dynein to transport bcd RNA along microtubules to their minus ends at the anterior pole of the oocyte.
Abstract. Coiled bodies are conserved subnuclear domains found in both plant and animal cells. They contain a subset of splicing snRNPs and several nucleolar antigens, including Nopp140 and fibrillarin. In addition, autoimmune patient sera have identified a coiled body specific protein, called p80 coilin. In this study we show that p80 coilin is ubiquitously expressed in human tissues. The full-length human p80 coilin protein correctly localizes in coiled bodies when exogenously expressed in HeLa cells using a transient transfection assay. Mutational analysis identifies separate domains in the p80 coilin protein that differentially affect its subnuclear localization. The data show that p80 coilin has a nuclear localization signal, but this is not sufficient to target the protein to coiled bodies. The results indicate that localization in coiled bodies is not determined by a simple motif analogous to the NLS motifs involved in nuclear import. A specific carboxy-terminal deletion in p80 coilin results in the formation of pseudo-coiled bodies that are unable to recruit splicing snRNPs. This causes a loss of endogenous coiled bodies. A separate class of mutant coilin proteins are shown to localize in fibrillar structures that surround nucleoli. These mutants also lead to loss of endogenous coiled bodies, produce a dramatic disruption of nucleolar architecture and cause a specific segregation of nucleolar antigens. The structural change in nucleoli is accompanied by the loss of RNA polymerase I activity. These data indicate that p80 coilin plays an important role in subnuclear organization and suggest that there may be a functional interaction between coiled bodies and nucleoli.T HE nucleus is a highly compartmentalized organelle.There is now evidence that protein and RNP factors involved in nuclear processes such as transcription, replication, pre-mRNA processing, and ribosome biogenesis are either partially or exclusively localized within discrete subnuclear domains or compartments (for review see Spector, 1993). In addition, several subnuclear compartments are known whose functions have not yet been identified. These include, inter alia, snRNP containing structures, such as coiled bodies and interchromatin granule clusters (for reviews see Gall, 1991;Brasch and Ochs, 1992;Lamond and Carmo-Fonseca, 1993;Spector, 1993;Bohmann et al., 1995) and PML bodies (Weis et al., 1994;Dyck et al., 1994;Koken et al., 1994). However, relatively little is known about how distinct nuclear compartments are formed without the use of membranes or about how specific antigens are selectively transported and recruited into these domains. It has been reported that the SR domain, a motif comprised of repeating serine-argine dipeptides found in certain splicing factors, plays a role in subnuclear targeting to speckled structures, though not to coiled bodies (Li and Bingham, 1991 ing complex signals rather than simple peptide motifs (for review see Scheer and Weisenberger, 1994). Although it is still at an early stage, there is increasing in...
BACKGROUND: Formalin-fixed paraffin-embedded (FFPE) tumor material represents a valuable resource for the analysis of RNA-based biomarkers, both in research laboratories and in routine clinical testing. A robust and automated RNA-extraction method with a high sample throughput is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.