Neutrophils represent the main component of innate immunity in the clearance of bacterial infections. To pass the tissue and to localize and reach the site of infection, the peripheral blood neutrophils have to pass through a complex receptor-mediated interaction with the endothelial layer. Under pathophysiological conditions, such as severe sepsis, this process is impaired and often characterized by neutrophil aggregation. In this study, we examined the impact of three different Staphylococcus aureus strains on the activation status of human peripheral blood neutrophils by coincubation of bacterial culture supernatant with whole blood. This complex interaction of a gram-positive stimulus with blood components leads to a special neutrophil activation phenotype, which is characterized by an overexpression of the cell-surface molecule CD66b. The process is accompanied by a strong increase of homotypic aggregates and seems to be initialized by a massive activation impulse caused by the interplay of plasma components. This maximum activation of neutrophils prior to the complex and highly regulated activation required for transmigration might play a key role in the neutrophil dysfunction in gram-positive sepsis.
Candida albicans infections often occur during or shortly after antibacterial treatment. Phagocytosis by polymorphonuclear neutrophil granulocytes (PMN) is the most important primarily defence mechanism against C. albicans. Certain antibiotics such as some fluoroquinolones (FQ) are known to influence phagocyte functions. Thus, we investigated the influence of older and newer FQ on the phagocytosis and killing of C. albicans by human PMN paying special attention to CD11b expression of these cells as an indicator of the degree of their activation. In order to obtain comprehensive and comparable results we tested 13 FQ over a wide range of concentrations and in a time dependent manner in a standardized approach. When used at therapeutic concentrations, the FQ tested did not influence to a clinically significant degree the phagocytosis or the killing of C. albicans by human PMN and also not their activation. However, at high concentrations those FQ with cyclopropyl-moiety at position N1 showed increase in CD11b expression and diminished phagocytosis and oxidative burst.
The current therapy success of depressive disorders remains in need of improvement due to low response rates and a delay in symptomatic improvement. Reliable functional biomarkers would be necessary to predict the individual treatment outcome. On the basis of the neurotrophic hypothesis of antidepressant's action, effects of antidepressant drugs on proliferation may serve as tentative individual markers for treatment efficacy. We studied individual differences in antidepressant drug effects on cell proliferation and gene expression in lymphoblastoid cell lines (LCLs) derived from patients treated for depression with documented clinical treatment outcome. Cell proliferation was characterized by EdU (5-ethynyl-2'-deoxyuridine) incorporation assays following a 3-week incubation with therapeutic concentrations of fluoxetine. Genome-wide expression profiling was conducted by microarrays, and candidate genes such as betacellulin—a gene involved in neuronal stem cell regeneration—were validated by quantitative real-time PCR. Ex vivo assessment of proliferation revealed large differences in fluoxetine-induced proliferation inhibition between donor LCLs, but no association with clinical response was observed. Genome-wide expression analyses followed by pathway and gene ontology analyses identified genes with different expression before vs after 21-day incubation with fluoxetine. Significant correlations between proliferation and gene expression of WNT2B, FZD7, TCF7L2, SULT4A1 and ABCB1 (all involved in neurogenesis or brain protection) were also found. Basal gene expression of SULT4A1 (P=0.029), and gene expression fold changes of WNT2B by ex vivo fluoxetine (P=0.025) correlated with clinical response and clinical remission, respectively. Thus, we identified potential gene expression biomarkers eventually being useful as baseline predictors or as longitudinal targets in antidepressant therapy.
Neutrophil granulocytes constitute the main component of innate immunity in the clearance of bacterial infections. However, during systemic inflammation, immunoparalysis may occur resulting in neutrophil dysfunction. This study presents a new in vitro model for analyzing the dysfunction of human peripheral blood neutrophils resulting from the interaction with Staphylococcus aureus components in whole blood. After induction of a massive complement activation by S. aureus supernatant, the neutrophils exhibit a reduced phagocytic capacity resulting in a dramatic reduction of the antibacterial activity similar to that of neutrophils isolated from septic patients. The number of phagocytozing neutrophils is drastically reduced as well as the phagocytic capacity designated by a significantly lower number of ingested microbes. This dysfunction correlates with the loss of complement component 5a receptor 1 from the neutrophil cell surface and can be further characterized by a C5a-induced CD66b overexpression. The presented in vitro model offers a new platform for preclinical testing of immunosuppressive drugs and delivers new information for the understanding of neutrophil dysfunctions under the conditions described.
Background/Aims: In a recent phase III clinical trial on linezolid, more patients in the linezolid treatment arm acquired Gram-negative catheter-related bloodstream infections despite the adequate therapy of infections caused by Gram-negative bacteria. We tested our hypothesis that linezolid impairs phagocytosis and the killing of Gram-negative bacteria by polymorphonuclear leukocytes (PMN). Methods: The influence of clinically relevant concentrations (5, 20 and 50 mg/l) of linezolid on granulocyte function in vitro was tested. Phagocytosis was determined by flow cytometry, and killing of bacteria was evaluated by plate counting. Chemotaxis was examined by an under-agarose cell migration assay. Gram-positive and Gram-negative bacteria were used. Results: Linezolid significantly impaired phagocytosis of a specific Escherichia coli strain in a concentration-dependent manner, whereas the effect on Pseudomonas aeruginosa was less prominent. No such effects were observed with a different E. coli strain or Staphylococcus aureus. Neither killing nor the chemotactic behaviour of PMN was significantly affected by linezolid. Conclusions: The observed concentration-dependent impairment of the phagocytic function might contribute to the higher frequency of catheter-related Gram-negative bloodstream infections in patients treated with linezolid. Individual patient risk may also depend on the causative Gram-negative strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.