We demonstrate that aldehyde-substituted donor-acceptor cruciforms [1,4-bis(arylethynyl)-2,5-distyrylbenzenes] are useful dosimeters for primary amines, primary diamines, and secondary amines. The 1,n-diamines are particularly reactive towards this dosimeter and can be detected in less than 100 ppm concentration. Using a single aldehyde-functionalized cruciform in seven different solvents allowed us to discern fourteen different amines by digital photography and statistical evaluation of the response patterns extracted as red, green, blue (RGB) values.
Combining the molecular wire effect with a biphasic sensing approach (analyte in water, sensor-dye in 2-methyltetrahydrofuran) and a microfluidic flow setup leads to the construction of a mercury-sensitive module. We so instantaneously detect Hg(2+) ions in water at a 500 μM concentration. The sensor, conjugated non-water soluble polymer 1 (XFPF), merely supports dibutylaniline substituents as binding units. Yet, selective and sensitive detection of Hg(2+) -ions is achieved in water. The enhancement in sensory response, when comparing the reference compound 2 to that of 1 in a biphasic system in a microfluidic chip is >10(3) . By manipulation of the structure of 1, further powerful sensor systems should be easily achieved.
Enantioselective syntheses O 0031Enantioselective Iridium-Catalyzed Allylic Alkylations -Improvements and Applications Based on Salt-Free Reaction Conditions. -Simplified salt-free procedures for the efficient asymmetric alkylation of allylic carbonates are applied to the synthesis of chiral building blocks such as Tamaguchi lactone (VI) and the small ring cycloalkanes (VIII). -(GNAMM, C.; FOERSTER, S.; MILLER, N.; BROEDNER, K.; HELMCHEN*, G.; Synlett 2007, 5, 790-794; Org.-Chem. Inst., Ruprecht-Karls-Univ., D-69120 Heidelberg, Germany; Eng.) -Mais 30-029
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.