Sphingosine kinases (SphKs) catalyze the phosphorylation of sphingosine to sphingosine-1-phosphate (S1P). Together with other sphingolipid metabolizing enzymes, SphKs regulate the balance of the lipid mediators, ceramide, sphingosine, and S1P. The ubiquitous mediator S1P regulates cellular functions such as proliferation and survival, cytoskeleton architecture and Ca(2+) homoeostasis, migration, and adhesion by activating specific high-affinity G-protein-coupled receptors or by acting intracellularly. In mammals, two isoforms of SphK have been identified. They are activated by G-protein-coupled receptors, receptor tyrosine kinases, immunoglobulin receptors, cytokines, and other stimuli. The molecular mechanisms by which SphK1 and SphK2 are specifically regulated are complex and only partially understood. Although SphK1 and SphK2 appear to have opposing roles, promoting cell growth and apoptosis, respectively, they can obviously also substitute for each other, as mice deficient in either SphK1 or SphK2 had no obvious abnormalities, whereas double-knockout animals were embryonic lethal. In this review, our understanding of structure, regulation, and functional roles of SphKs is updated and discussed with regard to their implication in pathophysiological and disease states.
Sphingosine-1-phosphate (S1P), the product of sphingosine kinase, activates several widely expressed G-proteincoupled receptors (GPCR). S1P might also play a role as second messenger, but this hypothesis has been challenged by recent ¢ndings. Here we demonstrate that intracellular S1P can mobilize Ca 2+ in intact cells independently of S1P-GPCR. Within seconds, S1P generated by the photolysis of caged S1P raised the intracellular free Ca 2+ concentration in HEK-293, SKNMC and HepG2 cells, in which the response to extracellularly applied S1P was either blocked or absent. Ca 2+ transients induced by photolysis of caged S1P were caused by Ca 2+ mobilization from thapsigargin-sensitive stores. These results provide direct evidence for a true intracellular action of S1P.
The lysophospholipids, sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), stimulate chemotaxis and induce differentiation of human keratinocytes. As Ca(2+) plays an important role in keratinocyte differentiation, we studied Ca(2+) signaling by S1P and LPA in these cells, known to express mRNA transcripts of the S1P(1-5) and LPA(1-3) receptors, and the receptor subtypes involved in this process. S1P and LPA caused transient increases in intracellular free Ca(2+) concentration ([Ca(2+)](i)), with pEC(50) values of 8.5+/-0.11 and 7.5+/-0.23, respectively. The [Ca(2+)](i) increases are apparently mediated by stimulation of phospholipase C and involve Ca(2+) mobilization from thapsigargin-sensitive stores and subsequent Ca(2+) influx. The LPA-induced [Ca(2+)](i) increases were not inhibited by the LPA(1/3) receptor antagonist, dioctanoylglycerol pyrophosphate. The S1P-induced [Ca(2+)](i) increases were largely inhibited by the putative S1P(3) antagonist, BML-241, and the S1P(1/3) antagonist, VPC23019. The S1P(1)-specific agonist, SEW2871, did not increase [Ca(2+)](i) but stimulated chemotaxis of keratinocytes, which was fully blocked by S1P(1) antisense oligonucleotides. The data indicate that LPA and S1P potently increase [Ca(2+)](i) in human keratinocytes and that the effect of LPA is mediated by LPA(2), whereas that of S1P is mediated at least to a large part by S1P(3). The S1P(1) receptor, without stimulating [Ca(2+)](i) increases, mediates chemotaxis of keratinocytes.
Formation of sphingosine-1-phosphate (SPP) by sphingosine kinase serves as a signalling pathway for various membrane receptors. Here, we show that membrane depolarisation is another mechanism by which this pathway can be activated. Formation of [ 3 H]SPP as well as levels of endogenous SPP were rapidly and transiently increased in PC12 pheochromocytoma cells depolarised with high KCl. Time course and maximum were similar to those induced by bradykinin. Depolarisation-induced SPP production was also observed in RINm5F insulinoma cells, dependent on extracellular Ca 2+ and fully suppressed by verapamil, thus apparently caused by Ca
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.