Context:The exchange of health information on the Internet has been heralded as an opportunity to improve public health surveillance. In a field that has traditionally relied on an established system of mandatory and voluntary reporting of known infectious diseases by doctors and laboratories to governmental agencies, innovations in social media and so-called user-generated information could lead to faster recognition of cases of infectious disease. More direct access to such data could enable surveillance epidemiologists to detect potential public health threats such as rare, new diseases or early-level warnings for epidemics. But how useful are data from social media and the Internet, and what is the potential to enhance surveillance? The challenges of using these emerging surveillance systems for infectious disease epidemiology, including the specific resources needed, technical requirements, and acceptability to public health practitioners and policymakers, have wide-reaching implications for public health surveillance in the 21st century.Methods: This article divides public health surveillance into indicator-based surveillance and event-based surveillance and provides an overview of each. We did an exhaustive review of published articles indexed in the databases PubMed, Scopus, and Scirus between 1990 and 2011 covering contemporary event-based systems for infectious disease surveillance.
Findings:Our literature review uncovered no event-based surveillance systems currently used in national surveillance programs. While much has been done
Background
Chatbots have been used in the last decade to improve access to mental health care services. Perceptions and opinions of patients influence the adoption of chatbots for health care. Many studies have been conducted to assess the perceptions and opinions of patients about mental health chatbots. To the best of our knowledge, there has been no review of the evidence surrounding perceptions and opinions of patients about mental health chatbots.
Objective
This study aims to conduct a scoping review of the perceptions and opinions of patients about chatbots for mental health.
Methods
The scoping review was carried out in line with the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) extension for scoping reviews guidelines. Studies were identified by searching 8 electronic databases (eg, MEDLINE and Embase) in addition to conducting backward and forward reference list checking of the included studies and relevant reviews. In total, 2 reviewers independently selected studies and extracted data from the included studies. Data were synthesized using thematic analysis.
Results
Of 1072 citations retrieved, 37 unique studies were included in the review. The thematic analysis generated 10 themes from the findings of the studies: usefulness, ease of use, responsiveness, understandability, acceptability, attractiveness, trustworthiness, enjoyability, content, and comparisons.
Conclusions
The results demonstrated overall positive perceptions and opinions of patients about chatbots for mental health. Important issues to be addressed in the future are the linguistic capabilities of the chatbots: they have to be able to deal adequately with unexpected user input, provide high-quality responses, and have to show high variability in responses. To be useful for clinical practice, we have to find ways to harmonize chatbot content with individual treatment recommendations, that is, a personalization of chatbot conversations is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.