Lameness in cattle is a complex condition with huge impacts on welfare, and its detection is challenging for the dairy industry. The present study aimed to evaluate the association between foot skin temperature (FST) measured using infrared thermography (IRT) and locomotion scoring (LS) in dairy cattle kept at pasture. Data were collected from a 940-cow dairy farm in New Zealand. Cows were observed at two consecutive afternoon milkings where LS was undertaken at the first milking (4-point scale (0–3), DairyNZ). The next day, cows were thermally imaged from the plantar aspect of the hind feet using a handheld T650sc forward-looking infrared camera (IRT). The association between FST and locomotion score was analysed using a generalised linear model with an identity link function and robust estimators. ROC curves were performed to determine optimal threshold temperature cut-off values by maximising sensitivity and specificity for detecting locomotion score ≥ 2. There was a linear association between individual locomotion scores and FST. For mean temperature (MT), each one-unit locomotion score increase was associated with a 0.944 °C rise in MT. Using MT at a cut-off point of 34.5 °C produced a sensitivity of 80.0% and a specificity of 92.4% for identifying cows with a locomotion score ≥ 2 (lame). Thus, IRT has a substantial potential to be used on-farm for lameness detection. However, automation of the process will likely be necessary for IRT to be used without interfering with farm operations.
Lying behavior and activity may provide useful information for the prediction of an imminent calving and the health of transition dairy cows; however, it is important first to understand what constitutes typical lying behavior and activity because this has not been defined for grazing dairy cows during the transition period. Our objective was to describe changes in lying behavior and activity in grazing dairy cows during the transition period using varying phenotypes typical of commercial dairy herds under grazing systems. Behavior data from IceTag or IceQube (IceRobotics, Edinburgh, Scotland) triaxial accelerometers were collected for 310 cow parities from multiparous, mixedage (mean ± standard deviation; 4.5 ± 1.65 yr), and mixed-breed [Holstein-Friesian (HF), n = 216; and HF × Jersey, n = 94] grazing dairy cows from 4 parent experiments. The IceTags or IceQubes captured lying and activity data during the transition period (−21 to 34 d relative to calving) to allow the calculation of daily lying time (h/d), daily lying bouts (LB; no./d), mean LB duration (min/bout), and the number of steps taken (steps/d). Lying behavior and activity were analyzed using a repeated measures ANOVA during 3 periods: PRE (−21 to −3 d), POST (3 to 21 d), and the day of calving (d 0). Lying time was lower on d 0 (7.25 h/d) compared with PRE and POST lying times (10.3 and 8.58 h/d, respectively), with more frequent LB on d 0 (12.9 no./d) compared with the PRE and POST daily LB (8.15 vs. 7.74 no./d). Cows took more steps POST (4,424 steps/d) compared with d 0 and PRE (4,105and 2,289 steps/d, respectively). Regression analysis determined that daily lying time decreased substantially from −3 to 0 d (slope = −1.03 ± 0.07 h/d) and from −2 and −1 d for daily LB (slope = 5.09 ± 0.54 no./d), which may be due to the calving event itself but also reflect restlessness. Daily lying time, daily LB, LB duration, and number of steps taken were substantially altered at the time of the calving event in grazing dairy cows. Cows were more active, spent less time lying, and took more steps postcalving compared with precalving, and it appears that this behavior may largely be due to activity associated with twice daily milking. Mean lying behavior and activity measures were more highly variable across individuals than across groups. Information available via activity monitors may contribute to the improvement of individual management of transition dairy cows, and this research provides a benchmark for typical changes in behavior during the transition period in grazing systems.
Lameness is a tremendous problem in intensively managed dairy herds all over the world. It has been associated with considerable adverse effects on animal welfare and economic viability. The majority of studies have evaluated factors associated with gait disturbance by categorising cows into lame and non-lame. This procedure yet entails a loss of information and precision. In the present study, we extend the binomial response to five categories acknowledging the ordered categorical nature of locomotion assessments, which conserves a higher level of information. A cumulative link mixed modelling approach was used to identify factors associated with increasing locomotion scores. The analysis revealed that a low body condition, elevated somatic cell count, more severe hock lesions, increasing parity, absence of pasture access, and poor udder cleanliness were relevant variables associated with higher locomotion scores. Furthermore, distinct differences in the locomotion scores assigned were identified in regard to breed, observer, and season. Using locomotion scores rather than a dichotomised response variable uncovers more refined relationships between gait disturbances and associated factors. This will help to understand the intricate nature of gait disturbances in dairy cows more deeply.
Lameness remains a major concern for animal welfare and productivity in modern dairy production. Even though a trend toward loose housing systems exists and the public expects livestock to be kept under conditions where freedom of movement and the expression of natural behavior are ensured, restrictive housing systems continue to be the predominant type of housing in some regions. Factors associated with lameness were evaluated by application of multiple logistic regression modeling on data of 1,006 dairy cows from 56 tie stall farms in Bavaria, South Germany. In this population, approximately every fourth cow was lame (24.44% of scored animals). The mean farm level prevalence of lameness was 23.28%. In total, 22 factors were analyzed regarding their association with lameness. A low Body Condition Score (BCS) (OR 1.54 [95%-CI 1.05–2.25]) as well as increasing parity (OR 1.41 [95%-CI 1.29–1.54]) entailed greater odds of lameness. Moreover, higher milk yield (OR 0.98 [95%-CI 0.96–1.00]) and organic farming (OR 0.48 [95%-0.25–0.92]) appeared to be protectively associated with lameness. Cows with hock injuries (OR 2.57 [95%-CI 1.41–4.67]) or with swellings of the ribs (OR 2.55 [95%-CI 1.53–4.23]) had higher odds of lameness. A similar association was observed for the contamination of the lower legs with distinct plaques of manure (OR 1.88 [95%-CI 1.14–3.10]). As a central aspect of tie stall housing, the length of the stalls was associated with lameness; with stalls of medium [(>158–171 cm) (OR 2.15 [95%-CI 1.29–3.58]) and short (≤158 cm) length (OR 4.07 [95%-CI 2.35–7.05]) increasing the odds compared with long stalls (>171 cm). These results can help both gaining knowledge on relevant factors associated with lameness as well as approaching the problem of dairy cow lameness in tie stall operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.