Cestodes are unable to synthesize de novo most of their own membrane lipids, including cholesterol, and have to take them up from the host during an infection. The underlying molecular mechanisms are so far unknown. Here we report the identification and characterization of a novel gene, Emabp, which is expressed by larval stages and adults of the fox tapeworm Echinococcus multilocularis. The encoded protein, EmABP, displays significant homologies to apolipoprotein A-I binding protein (AI-BP) of mammalian origin and to metazoan YjeF_N domain proteins. Like mammalian AI-BP, EmABP carries an export-directing signal sequence which is absent in predicted AI-BP orthologs from the related flatworms Schistosoma japonicum and Schmidtea mediterranea. Using a specific antibody and immunoprecipitation techniques, we demonstrate that EmABP is secreted into the extraparasitic environment and into the hydatid fluid of in vitro-cultivated metacestode vesicles. Furthermore, we show that apolipoprotein A-I (apoA-I), a major constituent of cholesterol-transporting high-density lipoproteins, is present in hydatid fluid. By pulldown experiments, we demonstrate that recombinantly expressed, purified EmABP interacts with purified human apoA-I and is able to precipitate apoA-I from human serum. On the basis of these features and the suggested function of AI-BP in cholesterol transport in higher eukaryotes, we propose a role for EmABP in cholesterol and lipid uptake mechanisms of larval E. multilocularis.
The lethal zoonosis alveolar echinococcosis (AE) is caused by tumor-like, infiltrative growth of the metacestode larval stage of the tapeworm Echinococcus multilocularis. We previously showed that the metacestode is composed of posteriorized tissue and that the production of the subsequent larval stage, the protoscolex, depends on re-establishment of anterior identities within the metacestode germinative layer. It is, however, unclear so far how protoscolex differentiation in Echinococcus is regulated. We herein characterized the full complement of E. multilocularis TGFβ/BMP receptors, which is composed of one type II and three type I receptor serine/threonine kinases. Functional analyzes showed that all Echinococcus TGFβ/BMP receptors are enzymatically active and respond to host derived TGFβ/BMP ligands for activating downstream Smad transcription factors. In situ hybridization experiments demonstrated that the Echinococcus TGFβ/BMP receptors are mainly expressed by nerve and muscle cells within the germinative layer and in developing brood capsules. Interestingly, the production of brood capsules, which later give rise to protoscoleces, was strongly suppressed in the presence of inhibitors directed against TGFβ/BMP receptors, whereas protoscolex differentiation was accelerated in response to host BMP2 and TGFβ. Apart from being responsive to host TGFβ/BMP ligands, protoscolex production also correlated with the expression of a parasite-derived TGFβ-like ligand, EmACT, which is expressed in early brood capsules and which is strongly expressed in anterior domains during protoscolex development. Taken together, these data indicate an important role of TGFβ/BMP signalling in Echinococcus anterior pole formation and protoscolex development. Since TGFβ is accumulating around metacestode lesions at later stages of the infection, the host immune response could thus serve as a signal by which the parasite senses the time point at which protoscoleces must be produced. Overall, our data shed new light on molecular mechanisms of host-parasite interaction during AE and are relevant for the development of novel treatment strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.