In this paper, we study the interfacial friction of water at graphitic interfaces with various topologies, water between planar graphene sheets, inside and outside carbon nanotubes, with the goal to disentangle confinement and curvature effects on friction. We show that the friction coefficient exhibits a strong curvature dependence; while friction is independent of confinement for the graphene slab, it decreases with carbon nanotube radius for water inside, but increases for water outside. As a paradigm the friction coefficient is found to vanish below a threshold diameter for armchair nanotubes. Using a statistical description of the interfacial friction, we highlight here a structural origin of this curvature dependence, mainly associated with a curvature-induced incommensurability between the water and carbon structures. These results support the recent experiments reporting fast transport of water in nanometric carbon nanotube membranes.
Although hydrocarbon production from unconventional reservoirs, the so-called shale gas, has exploded recently, reliable predictions of resource availability and extraction are missing because conventional tools fail to account for their ultra-low permeability and complexity. Here, we use molecular simulation and statistical mechanics to show that continuum description—Darcy's law—fails to predict transport in shales nanoporous matrix (kerogen). The non-Darcy behaviour arises from strong adsorption in kerogen and the breakdown of hydrodynamics at the nanoscale, which contradict the assumption of viscous flow. Despite this complexity, all permeances collapse on a master curve with an unexpected dependence on alkane length. We rationalize this non-hydrodynamic behaviour using a molecular description capturing the scaling of permeance with alkane length and density. These results, which stress the need for a change of paradigm from classical descriptions to nanofluidic transport, have implications for shale gas but more generally for transport in nanoporous media.
In this work, we perform a theoretical study of liquid flow in graphitic nanopores of different sizes and geometries. Molecular dynamics flow simulations of different liquids (water, decane, ethanol, and OMCTS) in carbon nanotubes (CNT) are shown to exhibit flow velocities 1-3 orders of magnitude higher than those predicted from the continuum hydrodynamics framework and the no-slip boundary condition. These results support previous experimental findings obtained by several groups that reported exceptionally high liquid flow rates in CNT membranes. The liquid/graphite friction coefficient is identified as the crucial parameter for this fast mass transport in CNT. The friction coefficient is found to be very sensitive to wall curvature: friction is independent of confinement for liquids between flat graphene walls with zero curvature, whereas it decreases with increasing positive curvature (liquid inside CNT), and it increases with increasing negative curvature (liquid outside CNT). Furthermore, we present a theoretical approximate expression for the friction coefficient, which predicts qualitatively and semiquantitatively its curvature dependent behavior. The proposed theoretical description, which works well for different kinds of liquids (alcohols, alkanes, and water), sheds light on the physical mechanisms at the origin of the ultra low liquid/solid friction in CNT. In fact, it is due to their perfectly ordered molecular structure and their atomically smooth surface that carbon nanotubes are quasiperfect liquid conductors compared to other membrane pores like nanochannels in amorphous silica.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.