Creating glossaries for large corpora of requirments is an important but expensive task. Glossary term extraction methods often focus on achieving a high recall rate and, therefore, favor linguistic proecssing for extracting glossary term candidates and neglect the benefits from reducing the number of candidates by statistical filter methods. However, especially for large datasets a reduction of the likewise large number of candidates may be crucial. This paper demonstrates how to automatically extract relevant domain-specific glossary term candidates from a large body of requirements, the CrowdRE dataset. Our hybrid approach combines linguistic processing and statistical filtering for extracting and reducing glossary term candidates. In a twofold evaluation, we examine the impact of our approach on the quality and quantity of extracted terms. We provide a ground truth for a subset of the requirements and show that a substantial degree of recall can be achieved. Furthermore, we advocate requirements coverage as an additional quality metric to assess the term reduction that results from our statistical filters. Results indicate that with a careful combination of linguistic and statistical extraction methods, a fair balance between later manual efforts and a high recall rate can be achieved.
This paper presents the use of the Frama-C toolkit for the formal verification of a model of train-controlling software against the requirements of the CENELEC norm EN 50128. We also compare our formal approach with traditional unit testing
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.