Background Coral reef restoration projects are becoming a popular corporate environmental responsibility activity at hotel resorts. Such involvement of private businesses offers the potential to expand restoration into a new socioeconomic sector. However, the scarcity of user-friendly monitoring methods for hotel staff, but robust enough to detect changes over time, hinders the ability to quantify the success or failure of the restoration activity. Here, we present a monitoring method of easy application by hotel staff, without scientific training, using the standard resources available at a hotel resort. Methods Survival and growth of coral transplants were evaluated over 1 year at a boutique coral reef restoration site. The restoration was tailored to the needs of a hotel resort in Seychelles, Indian Ocean. A total of 2,015 nursery-grown corals of branching (four genera, 15 species), massive (16 genera, 23 species), and encrusting (seven genera, seven species) growth types were transplanted to a 1–3 m deep degraded patch reef. A unique cement mix was used to transplant corals onto the hard substrate. On the north side of each coral selected for monitoring, we attached an 8.2 cm × 8.2 cm reflective tile. We used reflective tiles instead of numbered tags due to the expected amount of biofouling growing on the tag surface. Every coral was recorded with top view photography (perpendicular to the plane of coral attachment), with the reflective square in the field of view. We drafted a map of the site to facilitate navigation and re-sighting of the monitored colonies. Then, we developed a simple monitoring protocol for hotel staff. Using the map, and the reflective tiles, the divers located the coral colonies, recorded status (alive, dead, bleaching), and took a photograph. We measured the two-dimensional coral planar area and the change in colony size over time using contour tissue measurements of photographs. Results The monitoring method was robust enough to detect the expected survival of coral transplants, with encrusting and massive corals outperforming branching corals. Survival of encrusting and massive corals was higher (50%–100%) than branching corals (16.6%–83.3%). The change in colony size was 10.1 cm2 ± 8.8 (SE). Branching coral survivors grew faster than massive/encrusting corals. A comprehensive approach to the boutique restoration monitoring experiment would have included comparisons with a control patch reef with a similar species composition to the coral transplants. However, the ability to monitor such a control site, in addition to the restoration site, was beyond the logistic capabilities of the hotel staff, and we were limited to monitoring survival and growth within the restoration site. We conclude that science-based boutique coral reef restoration, tailored to the needs of a hotel resort, combined with a simple monitoring method, can provide a framework for involving hotels as partners in coral reef restoration worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.