Demethylation of 5-methylcytosine in DNA is integral to the maintenance of an intact epigenome. The balance between the presence or absence of 5-methylcytosine determines many physiological aspects of cell metabolism, with a turnover that can be measured in minutes to years. Biochemically, addition of the methyl group is shared among all living kingdoms and has been well characterized, whereas the removal or reversion of this mark seems diverse and much less understood. Here, we present a summary of how DNA demethylation can be initiated directly, utilizing the ten-eleven translocation (TET) family of proteins, activation-induced deaminase (AID), or other DNA modifying enzymes, or indirectly, via transcription, RNA metabolism, or DNA repair; how intermediates in those pathways are substrates of the DNA repair machinery; and how demethylation pathways are linked and possibly balanced, avoiding mutations.
Activation induced deaminase (AID) deaminates cytosine to uracil, which is required for a functional humoral immune system. Previous work demonstrated, that AID also deaminates 5-methylcytosine (5 mC). Recently, a novel vertebrate modification (5-hydroxymethylcytosine - 5 hmC) has been implicated in functioning in epigenetic reprogramming, yet no molecular pathway explaining the removal of 5 hmC has been identified. AID has been suggested to deaminate 5 hmC, with the 5 hmU product being repaired by base excision repair pathways back to cytosine. Here we demonstrate that AID’s enzymatic activity is inversely proportional to the electron cloud size of C5-cytosine - H > F > methyl >> hydroxymethyl. This makes AID an unlikely candidate to be part of 5 hmC removal.
Antibody diversification requires the DNA deaminase AID to induce DNA instability at immunoglobulin (Ig) loci upon B cell stimulation. For efficient cytosine deamination, AID requires single-stranded DNA and needs to gain access to Ig loci, with RNA pol II transcription possibly providing both aspects. To understand these mechanisms, we isolated and characterized endogenous AID-containing protein complexes from the chromatin of diversifying B cells. The majority of proteins associated with AID belonged to RNA polymerase II elongation and chromatin modification complexes. Besides the two core polymerase subunits, members of the PAF complex, SUPT5H, SUPT6H, and FACT complex associated with AID. We show that AID associates with RNA polymerase-associated factor 1 (PAF1) through its N-terminal domain, that depletion of PAF complex members inhibits AID-induced immune diversification, and that the PAF complex can serve as a binding platform for AID on chromatin. A model is emerging of how RNA polymerase II elongation and pausing induce and resolve AID lesions.
The transcription of the 14 p-gvp genes involved in gas vesicle formation of Halobacterium salinarum PHH1 is driven by the four promoters pA, pD, pF and pO. The regulation of these promoters was investigated in Haloferax volcanii transformants with respect to the endogenous regulatory proteins GvpE and GvpD. Northern analyses demonstrated that the transcription derived from the pA and pD promoters was enhanced by GvpE, whereas the activities of the pF and pO promoters were not affected. Similar results were obtained using promoter fusions with the bgaH reporter gene encoding an enzyme with b-galactosidase activity. The largest amount of specific b-galactosidase activity was determined for pA-bgaH transformants, followed by pF-bgaH and pD-bgaH transformants. The presence of GvpE resulted in a severalfold induction of the pA and pD promoter, whereas the pF promoter was not affected. A lower GvpE-induced pA promoter activity was seen in the presence of GvpD in the pA-bgaH/DE ex transformants, suggesting a function of GvpD in repression. To determine the DNA sequences involved in the GvpE-mediated activation, a 50-nucleotide region of the pA promoter was investigated by 4-nucleotide scanning mutagenesis. Some of these mutations affected the basal transcription, especially mutations in the region of the TATA box and the putative BRE sequence element, and also around position "10. Mutant E, harbouring a sequence with greater identity to the consensus BRE element, showed a significantly enhanced basal promoter activity compared to wild-type.Mutations not affecting basal transcription, but yielding a reduced GvpE-mediated activation, were located immediately upstream of BRE. These results suggested that the transcription activation by GvpE is in close contact with the core transcription machinery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.