We present a study on laser-driven proton acceleration from a hydrogen cluster target. Aiming for the optimisation of the proton source, we performed a detailed parametric scan of the interaction conditions by varying different laser and the target parameters. While the underlying process of a Coulomb-explosion delivers moderate energies, in the range of 100 s of keV, the use of hydrogen as target material comes with the benefit of a debris-free, single-species proton acceleration scheme, enabling high repetition-rate experiments, which are very robust against shot-to-shot fluctuations.
OPEN ACCESS RECEIVED
The design and operation of an online energy and spatially resolving detector based on three different scintillators for laser-driven protons are described. The device can be used for a multi-Hertz recording rate. The spatial resolution is <0.5 mm, allowing to retrieve details of the proton beam which is of interest, e.g., for radiographic applications. At the same time, the particle energy is divided into three energy bands between 1 MeV and 5 MeV to retrieve the proton energy spectrum. The absolute response of the detector was calibrated at a conventional proton accelerator.
In this paper, we report on the acceleration of protons and oxygen ions from tens of micrometer large water droplets by a high-intensity laser in the range of 1020 W/cm2. Proton energies of up to 6 MeV were obtained from a hybrid acceleration regime between classical Coulomb explosion and shocks. Besides the known thermal energy spectrum, a collective acceleration of oxygen ions of different charge states is observed. 3D PIC simulations and analytical models are employed to support the experiential findings and reveal the potential for further applications and studies.
We study the laser-driven acceleration of electrons from overdense hydrogen clusters to energies of up to 13 MeV in laser forward direction and several hundreds of keV in an outer ring-structure. The use of cryogenic hydrogen allows for high repetition-rate operation and examination of the influence of source parameters like temperature and gas flow. The outer ring-structure of accelerated electrons, originating from the interaction, that is robust against the change of laser and target parameters can be observed for low electron densities of ca. 3×10^16 cm−3 . For higher electron densities, an additional central spot of electrons in the laser forward direction can be observed. Utilizing 3D-PIC simulations, it is revealed that both electron populations mainly stem from ponderomotive scattering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.