The monoterpenoid indole alkaloids (MIAs) of Madagascar periwinkle (Catharanthus roseus) continue to be the most important source of natural drugs in chemotherapy treatments for a range of human cancers. These anticancer drugs are derived from the coupling of catharanthine and vindoline to yield powerful dimeric MIAs that prevent cell division. However the precise mechanisms for their assembly within plants remain obscure. Here we report that the complex development-, environment-, organ-, and cellspecific controls involved in expression of MIA pathways are coupled to secretory mechanisms that keep catharanthine and vindoline separated from each other in living plants. Although the entire production of catharanthine and vindoline occurs in young developing leaves, catharanthine accumulates in leaf wax exudates of leaves, whereas vindoline is found within leaf cells. The spatial separation of these two MIAs provides a biological explanation for the low levels of dimeric anticancer drugs found in the plant that result in their high cost of commercial production. The ability of catharanthine to inhibit the growth of fungal zoospores at physiological concentrations found on the leaf surface of Catharanthus leaves, as well as its insect toxicity, provide an additional biological role for its secretion. We anticipate that this discovery will trigger a broad search for plants that secrete alkaloids, the biological mechanisms involved in their secretion to the plant surface, and the ecological roles played by them.catharanthine | Catharanthus roseus | surface secretion | vindoline
Fitness costs of resistance are among the most widely discussed explanations for the evolution of induced resistance, but studies on induced resistance to pathogens are scarce and contradictory. In the present study the influence of nitrogen supply, length of the growing period and competition on the seed production of Arabidopsis in response to treatment with the chemical resistance elicitor BION ® was investigated. BION ® treatment elicited resistance to the bacterial pathogen Pseudomonas syringae , and biochemical changes after BION ® treatment were similar to those observed after bacterial infection. Induced plants grew more slowly during the first week after resistance induction, for which they then compensated by exhibiting faster growth than controls. Whether or not induced plants produced less seeds than controls depended on growing conditions. Costs, no costs and even higher seed production by induced plants were observed in experiments differently combining abiotic conditions. A higher seed production by induced plants arose particularly when the vegetation period was short, most probably a consequence of senescence-related processes that had been activated by resistance elicitation. Induced plants, however, produced less seeds when competing with controls and experiencing a full growing period. Studies controlling only some of the critical environmental factors can easily lead to apparently contradictory results, which in fact represent different outcomes of a complex interplay of factors.
Knowledge about the induced pathogen resistance of plants is rapidly increasing, but little information exists on its dependence on abiotic growing conditions. Arabidopsis thaliana plants that had been cultivated under different nitrogen regimes were treated with BION ® , a chemical resistance elicitor. The activities of three enzyme classes functionally involved in resistance (chitinase, chitosanase and peroxidase) were quantified over 8 d following treatment as resistance markers. Constitutive levels of three markers and the induced level of peroxidase and chitinase activity were significantly lower under limiting nitrogen supply. Under such conditions the increase of chitosanase activity after resistance induction was severely delayed, although the induced maximum activity of chitosanase was not significantly affected. Total soluble protein content decreased during the first 12 h after resistance elicitation. Thereafter, the induced plants cultivated under high N conditions reached higher protein contents than controls, whereas N-limited induced plants continuously had reduced protein contents. A plant's investment in resistance-related compounds can be severely constrained under limiting nitrogen supply.
The complement (C) system is a potent innate immune defence system against parasites. We have recently characterised and expressed OmCI, a 16 kDa protein derived from the soft tick Ornithodoros moubata that specifically binds C5, thereby preventing C activation. The structure of recombinant OmCI determined at 1.9 Å resolution confirms a lipocalin fold and reveals that the protein binds a fatty acid derivative that we have identified by mass spectrometry as ricinoleic acid. We propose that OmCI could sequester one of the fatty acid-derived inflammatory modulators from the host plasma, thereby interfering with the host inflammatory response to the tick bite. Mapping of sequence differences between OmCI and other tick lipocalins with different functions, combined with biochemical investigations of OmCI activity, supports the hypothesis that OmCI acts by preventing interaction with the C5 convertase, rather than by blocking the C5a cleavage site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.