Summary• Several studies have demonstrated the involvement of soil-borne Phytophthora species, especially Phytophthora quercina , in European oak decline. However, knowledge about the pathogenicity of P. quercina in natural forest soils is limited.• The short-term effects of two south-Swedish isolates of P. quercina on root vitality of Quercus robur seedlings grown in two different soils, one high pH, nutrient-rich peat-sand mixture and one acid, nitrogen-rich but otherwise nutrient-poor forest soil are described. Pathogenicity of P. quercina was tested using a soil infestation method under a restricted mesic water regime without prolonged flooding of the seedlings.• There was a significant difference in dead fine-root length between control seedlings and seedlings grown in soil infested with P. quercina . Trends were similar for both soil types and isolates, but there was a higher percentage of fine-root die-back and more severe damage on coarse roots in the acid forest soil. No effects on aboveground growth or leaf nutrient concentration between control seedlings and infected seedlings were found.• The results confirm the pathogenicity of south-Swedish isolates of P. quercina in acid forest soils under restricted water availability. Stress-induced susceptibility of the seedlings and/or increased aggressiveness of the pathogen in the forest soil are discussed as key factors to explain the difference in root die-back between soil types.
The effect of Phytophthora species, soil chemistry, precipitation and temperature on the vitality of oak was evaluated in 32 oak stands in southern Sweden. In addition, the relationship between the occurrence of Phytophthora species and soil conditions was determined. The results showed that there was a weak association between the presence of P. quercina , the most frequently recovered Phytophthora species in southern Sweden, and the vitality of the oak stands (determined from estimates of crown defoliation of individual trees). The pathogens occurred more frequently in clayey and loamy soils that were less acidic and which had higher base saturation. However, they were found in all but the most acidic soils (pH < 3·5). In stands where Phytophthora species were not present, positive correlations between the average crown defoliation and proportion of damaged trees with average summer precipitation and average annual precipitation were found. There were no significant differences in soil chemistry between healthy and declining stands included in this study, and no significant correlations were found between any soil parameter and crown vitality. Based on the results from these 32 oak stands, it is likely that the decline of oaks in southern Sweden can be attributed to several different site-specific factors, such as infection by P. quercina or unusual weather events, which interact with a number of biotic and abiotic factors, leading to oak decline.
-• A network of oak (Quercus robur L.) chronologies containing 49 sites and 635 single trees was analysed to identify weather variables affecting annual tree-ring increment dynamics in southern Sweden during 1860-2000.• We analysed (1) the growth response of oak to non-extreme weather, and (2) the temporal and spatial patterns of regional growth anomalies (pointer years) and associated climatic extremes resolved on a monthly scale.• Growth was controlled by precipitation in the current (June-July) and the previous growing season (August) in 48% and 22% of all sites, respectively. Temperature during July of the current year and August of the previous year was negatively correlated with growth in 29% and 43% of the sites, respectively. Growth was positively correlated with temperature in October of the previous season in 72% of the sites. The most extensive growth anomaly occurred in 1965 and was probably caused by intrusion of cold Arctic air masses into the region at the end of March that year.• During climatically non-extreme years, oak growth is driven mostly by the dynamics of summer precipitation. Many of the negative growth anomalies, however, were associated with temperature extremes. Southern Swedish oak pointer years tend not to coincide with the pan-European oak pointer years.climatic variability / dendroecology / extreme events / hardwood / Scandinavia Résumé -Influence de la variabilité interannuelle de climat sur la croissance du chêne pédonculé dans le Sud de la Suède.• Une série de chronologies de chênes (Quercus robur L.) comprenant 49 stations et 635 arbres individuels a été analysée pour identifier les variables climatiques affectant la dynamique de croissance annuelle des cernes dans le Sud de la Suède, pendant la période 1860-2000.• Nous avons analysé (1) la réponse de croissance des chênes aux évènements météorologiques non extrêmes et (2) les patrons temporels et spatiaux des anomalies régionales de croissance (années indices) et les extrêmes climatiques associés au pas de temps mensuel.• La croissance était contrôlée par les précipitations de la saison de végétation (juin-juillet) et les précipitations de la saison de végétation précédente (août), respectivement dans 48 % et 22 % de toutes les stations. Les températures du mois de juillet de la saison de végétation et du mois d'août de l'année précédente étaient corrélées négativement avec la croissance, respectivement dans 29 % et 43 % des stations. La croissance était corrélée positivement avec la température du mois d'octobre de l'année précédente dans 72 % des stations. L'anomalie de croissance la plus considérable est arrivée en 1965 et a été causée probablement par l'intrusion de masses d'air froid arctique dans la région, à la fin du mois de mars.• Pendant les années climatiquement non-extrêmes, la croissance du chêne est principalement commandée par la dynamique des précipitations estivales. Cependant, beaucoup d'anomalies négatives de croissance ont été associées avec des extrêmes de température. Les années indices du Sud ...
We studied correlation between crown conditions and tree-ring widths in 260 trees of pedunculate oak (Quercus robur L.) growing on 33 sites in southern Sweden. The tree-ring increment over 1998-2002 was highest in trees with healthy crowns, intermediate in trees with moderately declined crowns, and lowest in trees with heavily declining crowns. The time period with significant correlation between crown status and tree-ring increment varied between 10 years (given autocorrelation in tree-ring chronologies preserved) and 4 years (autocorrelation removed). In pairwise comparisons of three crown classes, differences in tree-ring increment between trees with healthy crowns and trees with heavily declining crowns were the most pronounced, Fisher LSD P value staying below 0.05 over 13 years (autocorrelation preserved ) or 4 years (autocorrelation removed). Over two 5-year periods (1993-1997 vs. 1998-2002) the cumulative increment increased significantly for trees with healthy crowns, did not change in trees with moderately declining crowns, and significantly decreased in trees with heavily declining crowns. For trees with healthy crowns, this dynamics may represent growth recovery after 1992 drought. Instead, oaks with defoliation above 60% appear to reach a threshold in their ability to recover growth. At sites on nutrient-poor soils cumulative increments over 1998-2002 differed significantly among trees with different crown condition and no differences were observed at sites on nutrient-rich soils. Analyses and interpretation of the oak growth trends as recovered from tree-ring chronologies may be improved by controlling for the crown status of the trees sampled, e.g., by using sampling strategy that would represent the average crown and growth conditions of the sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.