Most biocements are two- or three-component acid-based systems with large differences in the component particle sizes, which occurs by virtue of the differing processing routes. This work aimed to improve injectability and strength of a single reactive component cement, that is, mechanically activated alpha-tricalcium phosphate (TCP)-based cement by adding 13-33 wt % of several fine-particle-sized (d(50) of 0.5-1.1 microm) fillers [dicalcium phosphate anhydrous (DCPA), titanium dioxide (TiO(2)), and calcium carbonate] to the monomodal alpha-TCP matrix (d(50) = 9.8 microm). A high zeta-potential was measured for all particles in trisodium citrate solution. The fraction of alpha-TCP cement "injected" through an 800-microm hypodermic needle was found to be only 35% at a powder-to-liquid ratio of 3.5 g/mL. In contrast, the use of fillers decreased cement viscosity to a point, where complete injectability could be obtained. Mechanistically, these additives disrupted alpha-TCP particle packing yet decreased the interparticle spacing by a factor of approximately 5.5 such that the electrostatic repulsion effect was enhanced. A strength improvement was found when DCPA and TiO(2) were used as fillers despite the lower degree of conversion of these cements. Compressive strengths of precompacted cement samples increased from 70 MPa for unfilled alpha-TCP cement to 140 (110) MPa for 23 wt % DCPA (or TiO(2)) fillers as a result of porosity reduction. Strength improvement for more clinically relevant uncompacted cements was achieved by higher powder-to-liquid ratio mixes for filled cements such that maximum strengths of 90 MPa were obtained for 23 wt % DCPA filler compared with 50 MPa for single-component alpha-TCP cement.
Calcium phosphate cements (CPC), based on multicomponent powder mixtures of calcium orthophosphates with medium particle sizes in the region of 1 -20 lm, set isothermally in an aqueous environment to form hydroxyapatite (HA). HA cement reactants include tetracalcium phosphate (TTCP), tricalcium phosphate (TCP), dicalcium phosphate anhydrate (DCPA), dicalcium phosphate dihydrate (DCPD), monocalcium phosphate (MCPA) or octacalcium phosphate (OCP). The aim of this study was to improve the mechanical performance of TTCP / DCPA cement by adding several metal oxides to tetracalcium phosphate during the fabrication process. Cements based on tetracalcium phosphate mixed with silica or titanium oxide showed significant increases in compressive strength, approximately 80 -100 MPa, whilst no change in the mechanical behavior of CPC was observed if zirconia was added. Xray diffraction measurement confirmed the setting reaction of doped cements was similar to that of pure CPC. Low crystalline HA was found to be the main constituant of set cement; additional phases, such as calcium titanate or calcium zirconate, were not involved in the reaction. A mechanical reinforcement effect was thought to result from changes in the thermodynamic or kinetic solubilities of doped tetracalcium phosphates, this would lead to slower HA crystal formation and a more cross-linked cement structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.