A diazo initiator and a chain transfer agent (CTA), both containing a pentafluorophenyl (PFP) activated ester, were synthesized. In a RAFT polymerization using the functionalized chain transfer agent (PFPCTA), methyl methacrylate (MMA), diethylene glycol monomethyl ether methacrylate (DEGMA), poly(ethylene glycol) monomethyl ether methacrylate (PEGMA), and lauryl methacrylate (LMA) could successfully be polymerized into homopolymers and diblock copolymers with good control over molecular weight, very high conversions, and narrow molecular weight distributions. Polymers derived from the PFP-CTA possessed an activated ester at the R-end of the polymer chain, which could be reacted with amines with high conversions. The terminal ω-dithioester group of each polymer chain could quantitatively be removed by treating the polymer with an excess of AIBN, leaving the R-PFP ester functionality intact. Accordingly, the pentafluorophenyl ester diazo compound could successfully be employed to functionalize RAFT polymers with a PFP ester at their ω-end. As a consequence, functionalization of both end groups was possible and led to telechelic polymers, exhibiting an active ester at both ends of the polymer chain. As an example, a high molecular weight PMMA was prepared by polycondensation with ethylenediamin
We report the conformational and assembly behavior of a thermoresponsive triblock biohybrid conjugate under aqueous conditions. The triblock comprises of poly(diethylene glycol methyl ether methacrylate) (PDEGMEMA) conjugated to the ends of a triple-helix forming collagen-like peptide. The circular dichroism (CD) experiment confirms the ability of the collagen-like peptide middle block to assemble as a triple helix in the hybrid conjugate. Above the LCST (~35 °C), the collapse of the thermoresponsive PDEGMEMA polymer at the ends of the peptide domain resulted in a concomitant increase in the conformational stability of the peptide domain towards thermal denaturation. Upon cooling back, the kinetic conformational refolding behavior was still observed for the peptide domain in the hybrid conjugate. Static light scattering (SLS) experiments suggested the formation of supramolecular structures upon increasing solution temperatures to above the LCST. The scattering intensity increased with increasing temperature, until at 75 °C then it was found to decrease. Cryogenic scanning electron microscopy and regular transmission electron microscopy suggested the formation of spherical aggregates that increased in size with increasing temperature up to 65 °C and a morphological transformation into fibrils was also observed at 75 °C. The synergistic effect of dual thermoresponsive behavior from the peptide and the polymer block in the triblock hybrid is suggested for the observed conformational and assembly behaviors.
Herein, we demonstrate the application of adducts of various N‐heterocyclic carbenes (NHCs) with CO2 (i.e., NHC–CO2) as precatalysts in the ring‐opening homopolymerization of propylene oxide (PO) onto diethylene glycol as a chain starter to give well‐defined polyether diols. The influence of various NHCs on the structure of the polymers and the mechanism of this reaction were investigated both experimentally and through DFT calculations. With this methodology, copolymers of PO and the monomers ε‐caprolactone and (S,S)‐lactide are accessible.
The synthesis of block copolymers via polymer conjugation of well-defined building blocks offers excellent control over the structures obtained, but often several coupling strategies need to be explored to find an efficient one depending on the building blocks. To facilitate the synthesis of polymers with adjustable functional end-groups for polymer conjugation, we report on the combination of activated ester chemistry with RAFT polymerization using a chain transfer agent (CTA) with a pentafluorophenyl ester (PFP-CTA), which allows for flexible functionalization of either the CTA prior to polymerization or the obtained polymer after polymerization. Different polymethacrylates, namely PMMA, P(t-BuMA) and PDEGMEMA, were synthesized with an alkyne-CTA obtained from the aminolysis of the PFP-CTA with propargylamine, and the successful incorporation of the alkyne Additional Supporting Information may be found in the online version of this article. Correspondence to: P. Theato
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.