The water flea Daphnia is a new model organism for ecological, evolutionary, and toxicological genomics. Detailed functional analysis of genes newly discovered through genomic approaches often requires overexpression of the identified protein. In the present study, we report the microinjection of in vitro-synthesized RNAs into the eggs as a method for overexpressing ubiquitous proteins in Daphnia magna. We injected a 1.3-kb mRNA that coded for the red fluorescent protein (DsRed2) flanked by UTRs from the ubiquitously expressed elongation factor 1α-1 (EF1α-1) into D. magna embryos. DsRed2 fluorescence in the embryos was measured 24 h after microinjection. Unexpectedly, the reporter RNA containing the 522-bp full-length EF1α-1 3' UTR failed to induce fluorescence. To assess reporter expression, the length of the 3' UTR that potentially contained negative regulatory elements of protein expression, including AU-rich regions and Musashi binding elements, was serially reduced from the 3' end. Assessing all injected RNA alternatives, mRNA containing the first 60 bp of the 3' UTR gave rise to the highest fluorescence, 14 times the Daphnia auto-fluorescence. In contrast, mRNA lacking the entire 3' UTR hardly induced any change in fluorescence intensity. This is the first evaluation of UTRs of mRNAs delivered into Daphnia embryos by microinjection for overexpressing proteins. The mRNA with truncated 3' UTRs of Daphnia EF1α-1 will be useful not only for gain-of-function analyses but also for labeling proteins and organelles with fluorescent proteins in Daphnia.
The freshwater crustacean Daphnia have a long history in water quality assessments and now lend themselves to detection of targeted chemicals using genetically encoded reporter gene due to recent progress in the development of genome editing tools. By introducing human genes into Daphnia, we may be able to detect chemicals that affect the human system, or even apply it to screening potentially useful chemicals. Here, we aimed to develop a transgenic line of Daphnia magna that contains the human estrogen receptor alpha (hERα) and shows a fluorescence response to exposure of estrogens. We designed plasmids to express hERα in Daphnia (EF1α1:esr1) and to report estrogenic activity via red fluorescence (ERE:mcherry) under the control of estrogen response element (ERE). After confirmation of functionality of the plasmids by microinjection into embryos, the two plasmids were joined, a TALE site was added and integrated into the D. magna genome using TALEN. When the resulting transgenic Daphnia named the ES line was exposed to Diethylstilbestrol (DES) or 17β-Estradiol (E2), the ES line could reliably expressed red fluorescence derived from mCherry in a ligand-dependent manner, indicating that an estrogen-responsive line of D. magna was established. This is the first time a human gene was expressed in Daphnia, showcasing potential for further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.