We have analyzed the impact of different forcings, such as rain and seismicity, on slope instabilites on an active volcano. For this, we compiled a catalog of the locations and volumes of rockfalls in the Piton de la Fournaise crater using seismic records. We validated it by comparing the locations and volumes to those deduced from photogrammetric data. We analyzed 10,477 rockfalls, spanning the period 2014 to 2016. This period corresponds to the renewal of volcanic activity after a 41‐month rest. Our analysis reveals that renewed eruptive activity has unsettled the crater edges. External forcings such as rain and seismicity are shown to potentially increase the number and the volume of rockfalls, with a stronger impact on the volume. Preeruptive seismicity seems to be the main triggering factor for the largest volumes, with a delay of one to several days. Rain alone does not seem to trigger especially large rockfalls. We infer that repetitive vibrations from the many seismic events, combined with the action of rain, induce crack (or slip) growth in highly fractured (or granular) materials, leading to the collapse of large volumes. Regarding their spatial distribution before an eruption, the largest rockfalls seem to migrate toward the location of magma extrusion.
Abstract. In high mountain regions, rockfalls are common processes, which transport different volumes of material and therefore endanger populated areas and infrastructure facilities. In four study areas within different lithological settings, LiDAR (light detection and ranging) data were acquired for a morphometric analysis of block sizes, block shapes and talus cone characteristics. Based on these high-resolution terrestrial laser scanning (TLS) data, the three axes of every block larger than 0.5 m in the referenced point cloud were measured. Block sizes and shapes are used to investigate them in the context of runout distances and to analyse the spatial distribution of blocks on the talus cone. We also investigate the influence of terrain parameters such as slope inclination, roughness and profile curvature (longitudinal profiles). Our study shows that the relation of block size within different lithological settings on runout length is complex, because we can neither confirm nor reject the theory of gravitational sorting. We also found that the block shape (axial ratio) does not have a simple influence on runout length, as it plays the role of a moderating parameter in two study sites (Gampenalm: GA, Dreitorspitze: DTS) while we could not confirm this for Piton de la Fournaise (PF) and Zwieselbach valley (ZBT). The derived roughness values show a clear difference between the four study sites. This also applies for the parameter of slope inclination and longitudinal profiles.
Abstract. In four study areas within different lithological settings and rockfall activity, lidar data were applied for a morphometric analysis of block sizes, block shapes and talus cone characteristics. This information was used to investigate the dependencies between block size, block shape and lithology on the one hand and runout distances on the other hand. In our study, we were able to show that lithology seems to have an influence on block size and shape and that gravitational sorting did not occur on all of the studied debris cones but that other parameters apparently control the runout length of boulders. Such a parameter seems to be the block shape, as it plays the role of a moderating parameter in two of the four study sites, while we could not confirm this for our other study sites. We also investigated the influence of terrain parameters such as slope inclination, profile curvature and roughness. The derived roughness values show a clear difference between the four study sites and seem to be a good proxy for block size distribution on the talus cones and thus could be used in further studies to analyse a larger sample of block size distribution on talus cones with different lithologies.
<p>High mountain environments have been confronted with rising temperatures and geomorphological changes over the past 150 years, with the considerable retreat of glaciers constituting one of the most pronounced impacts in the Alps. Concurrent degradation of permafrost in headwalls exposed from the downwasting ice and in periglacial hillslopes alongside glaciers causes increasing sediment flux onto glacier surfaces. The accumulation of supraglacial debris at the current glacier tongue promotes water-storage in debris-covered ice bodies and is assessed as an important source of sediment in the proglacial zone, since a close connection to the fluvial channel network can be assumed. The evolution of mountain streams, the degree of connectivity and conditional sedimentation-erosion effects significantly determine the dynamics in a generally unstable paraglacial landscape in which retreating glaciers provide high stream discharges while sediment is widely unconsolidated.</p><p>In the recent scientific debate, the anticipated progressive shift from supply-limitation (fluvial transport overcapacity) to transport-limitation (abundance of sediment) in high alpine catchment areas is discussed. Thus, this study intends to contribute by investigating the connection of coarse sediment including supraglacial debris from the proglacial transition zone to downstream fluvial transport. Key aspect is the feedback between increasing debris cover and a shifting runoff regime due to a changing composition of glacier melt, snow melt and heavy rainfall events. In that respect, the focus will be on the dynamics of bedload transport and the proglacial coarse sediment budget.</p><p>This study is part of the Hidden.Ice project and conducts in-depth monitoring of the connectivity, runoff measurements and geomorphological surveys at the LTER site Jamtalferner, Silvretta Range, Austria. Hydraulic modelling of the potential transport capacity supported by bedload trap measurements, the analysis of grain size distribution in the proglacial area and sediment volume changes calculated from UAV-based photogrammetry are aimed at raising knowledge on hydrological and geomorphological dynamics.</p>
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.