As a major representative nonholonomic system, wheeled mobile robot (WMR) is often used to travel across off-road environments that could be unstructured environments. Slippage often occurs when WMR moves in slopes or uneven terrain, and the slippage generates large accumulated position errors in the vehicle, compared with conventional wheeled mobile robots. An estimation of the wheel slip ratio is essential to improve the accuracy of locomotion control. In this paper, we propose an improved adaptive controller to allow WMR to track the desired trajectory under unknown longitudinal slip, where the stabilisation of the closed-loop tracking system is guaranteed by the Lyapunov theory. All system states use neural network online weight tuning algorithms, which ensure small tracking errors and no loss of stability in robot motion with bounded input signals. We demonstrate superior tracking results using the proposed control method in various Matlab simulations.
The hybrid joints of manipulators can be switched to either active (actuated) or passive (underactuated) mode as needed. Consider the property of hybrid joints, the system switches stochastically between active and passive systems, and the dynamics of the jump system cannot stay on each trajectory errors region of subsystems forever; therefore, it is difficult to determine whether the closed-loop system is stochastically stable. In this paper, we consider stochastic stability and sliding mode control for mobile manipulators using stochastic jumps switching joints. Adaptive parameter techniques are adopted to cope with the effect of Markovian switching and nonlinear dynamics uncertainty and follow the desired trajectory for wheeled mobile manipulators. The resulting closed-loop system is bounded in probability and the effect due to the external disturbance on the tracking errors can be attenuated to any preassigned level. It has been shown that the adaptive control problem for the Markovian jump nonlinear systems is solvable if a set of coupled linear matrix inequalities (LMIs) have solutions. Finally, a numerical example is given to show the potential of the proposed techniques.
Abstract:In this paper, a method is developed for presenting a novel virtual torque sensor based on precise model and position measurements avoids the need of traditional strain gauges and amplifiers. More specifically, the harmonic drive compliance model and the Gaussian process regression (GPR) technique are used together to achieve virtual torque sensor measurement. While the harmonic drive compliance model provides the analytic part, the Gaussian process regression method is used to reconstruct the unmolded part based on motor-side and link-side joint angles as well as motor current. After an automatic offline calibration, the method allows for a lean online implementation. The virtual torque sensor measurement is compared with measurements of a commercial torque sensor, and the results have attested the effectiveness of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.