In order to ameliorate the lung defects caused by missed juxtapleural nodules in lung segmentation on chest computed tomography (CT) images, we develop a Newton–Cotes-based smoothing algorithm (NCBS) which is used as a preliminary step to remove noises as many as possible. Next considering the crescent outline features of the lung, we propose a curvature-based correction algorithm (CBC) for the determination of the correction threshold. The application of the proposed algorithms is demonstrated in the process of lung segmentation and the experimental results on 25 real datasets are illustrated. Furthermore, some experiments are conducted to investigate the effects of the key parameters in CBC on the performances of lung segmentation so as to decide their optimal values. In addition, the CBC is compared with other methods analytically and experimentally. The overall results show that our proposed algorithm in lung segmentation excels the related methods on the capability of automatic selection of the correction threshold, as well as the performances of accuracy, efficiency and feasibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.