Computer vision-based automation has become popular in detecting and monitoring plants’ nutrient deficiencies in recent times. The predictive model developed by various researchers were so designed that it can be used in an embedded system, keeping in mind the availability of computational resources. Nevertheless, the enormous popularity of smart phone technology has opened the door of opportunity to common farmers to have access to high computing resources. To facilitate smart phone users, this study proposes a framework of hosting high end systems in the cloud where processing can be done, and farmers can interact with the cloud-based system. With the availability of high computational power, many studies have been focused on applying convolutional Neural Networks-based Deep Learning (CNN-based DL) architectures, including Transfer learning (TL) models on agricultural research. Ensembling of various TL architectures has the potential to improve the performance of predictive models by a great extent. In this work, six TL architectures viz. InceptionV3, ResNet152V2, Xception, DenseNet201, InceptionResNetV2, and VGG19 are considered, and their various ensemble models are used to carry out the task of deficiency diagnosis in rice plants. Two publicly available datasets from Mendeley and Kaggle are used in this study. The ensemble-based architecture enhanced the highest classification accuracy to 100% from 99.17% in the Mendeley dataset, while for the Kaggle dataset; it was enhanced to 92% from 90%.
Presently, lightweight devices such as mobile phones, notepads, and laptops are widely used to access the Internet throughout the world; however, a problem of privacy preservation and authentication delay occurs during handover operation when these devices change their position from a home mesh access point (HMAP) to a foreign mesh access point (FMAP). Authentication during handover is mostly performed through ticket-based techniques, which permit the user to authenticate itself to the foreign mesh access point; therefore, a secure communication method should be formed between the mesh entities to exchange the tickets. In two existing protocols, this ticket was not secured at all and exchanged in a plaintext format. We propose a protocol for handover authentication with privacy preservation of the transfer ticket via the Diffie–Hellman method. Through experimental results, our proposed protocol achieves privacy preservation with minimum authentication delay during handover operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.