The tomato (Lycopersicon esculentum Mill.) aurea (au) mutant has been characterized as a phytochrome-deficient mutant lacking spectrally detectable phytochrome A in etiolated seedlings. Seedlings of au grown under red light (RL) lack phytochrome regulation of nuclear genes encoding plastidic proteins, possess ill-developed chloroplasts, and are slow to de-etiolate. In the present study, the effect of phytochrome deficiency on photoinduction of enzymes in etiolated au seedlings was investigated. l h e photoinduction of the cytosolic enzymes amylase and nitrate reductase (NR) and of the plastidic enzyme nitrite reductase (NiR) in au was compared with that in the isogenic wild-type ( W l ) tomato and the high-pigment (hp) mutant with exaggerated phytochrome response. In WT and hp, both brief RL pulses and continuous RL induced amylase, NR, and NiR activities, whereas in au no photoinduction of enzymes was observed with brief RL pulses, and continuous RL induced only amylase and NR activities. The time courses of photoinduction of NR and amylase in au under continuous RL followed patterns qualitatively similar to hp and WT. A blue-light pretreatment prior to continuous RL exposure was ineffective in inducing NiR activity in au. Only continuous white light could elicit a photoinduction of NiR in au seedlings. l h e norflurazon-triggered loss of photoinduction of NiR in WT and hp indicated that NiR photoinduction depended on chloroplast biogenesis. l h e results indicate that observed photoinduction of NR and amylase in au may be mediated by a residual phytochrome pool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.