The severe acute respiratory syndrome COVID-19 declared a global pandemic by WHO has become the present wellbeing worry to the whole world. There is an emergent need to search for possible medications. We report in this study a molecular docking study of eighteen Oroxylum indicum molecules with the main protease (M pro) responsible for the replication of SARS-CoV-2 virus. The outcome of their molecular simulation and ADMET properties reveal four potential inhibitors of the enzyme (Baicalein-7-O-diglucoside, Chrysin-7-O-glucuronide, Oroxindin and Scutellarein) with preference of ligand Chrysin-7-Oglucuronide that has the second highest binding energy (− 8.6 kcal/mol) and fully obeys the Lipinski's rule of five.
Objective: The main objective of this work was to understand the basic properties of crystalline nanocellulose (CNC) that can be useful as a novel excipient in pharmaceutical formulations. This covers the isolation and preparation of nanocellulose followed by characterization.
Methods: Cellulose was isolated from aquatic weed by autoclaving and bleaching. Cellulose to CNC conversion involved gluconic acid treatments at different concentrations (40%, 50% and 60%) followed by centrifugation and neutralization. CNC was further characterized by Differential Scanning Calorimetry (DSC) and Thermo gravimetric Analysis (TGA), Field Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscopy (AFM) for surface morphology, elemental analysis by Energy Dispersive Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR), crystallinity index by X-Ray Diffraction (XRD), and optical microscopy.
Results: Acid concentration affects the moisture uptake, particle size, and yield of CNC. CNC size ranged from 350 nm to 900 nm with a crystallinity index 80% to 85%. Moisture uptake was 6.38±0.12% at 33% relative humidity. DSC and TGA established thermal stability over 200 °C. Nanocellulose has shown Angle of repose (28.81°), Carrs index (12.32), zeta potential (33mV) values and heavy metals within pharmacopoeial limits.
Conclusion: CNC from water hyacinth was prepared successfully by sustainable process. CNC physico-chemical characterization revealed the stable nature of CNC, suitable to be used as an excipient in pharmaceutical formulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.