Computational homogenization is the gold standard for concurrent multi-scale simulations (e.g., FE2) in scale-bridging applications. Often the simulations are based on experimental and synthetic material microstructures represented by high-resolution 3D image data. The computational complexity of simulations operating on such voxel data is distinct. The inability of voxelized 3D geometries to capture smooth material interfaces accurately, along with the necessity for complexity reduction, has motivated a special local coarse-graining technique called composite voxels (Kabel et al. Comput Methods Appl Mech Eng 294: 168–188, 2015). They condense multiple fine-scale voxels into a single voxel, whose constitutive model is derived from the laminate theory. Our contribution generalizes composite voxels towards composite boxels (ComBo) that are non-equiaxed, a feature that can pay off for materials with a preferred direction such as pseudo-uni-directional fiber composites. A novel image-based normal detection algorithm is devised which (i) allows for boxels in the firsts place and (ii) reduces the error in the phase-averaged stresses by around 30% against the orientation cf. Kabel et al. (Comput Methods Appl Mech Eng 294: 168–188, 2015) even for equiaxed voxels. Further, the use of ComBo for finite strain simulations is studied in detail. An efficient and robust implementation is proposed, featuring an essential selective back-projection algorithm preventing physically inadmissible states. Various examples show the efficiency of ComBo against the original proposal by Kabel et al. (Comput Methods Appl Mech Eng 294: 168–188, 2015) and the proposed algorithmic enhancements for nonlinear mechanical problems. The general usability is emphasized by examining various Fast Fourier Transform (FFT) based solvers, including a detailed description of the Doubly-Fine Material Grid (DFMG) for finite strains. All of the studied schemes benefit from the ComBo discretization.
Computational homogenization is the gold standard for concurrent multi-scale simulations (e.g., FE2) in scale-bridging applications. Experimental and synthetic material microstructures are often represented by 3D image data. The computational complexity of simulations operating on such three-dimensional high-resolution voxel data comprising billions of unknowns induces the need for algorithmically and numerically efficient solvers. The inability of voxelized 3D geometries to capture smooth material interfaces accurately, along with the necessity for complexity reduction, motivates a special local coarse-graining technique called composite voxels [1]. Composite voxels condense multiple fine-scale voxels into a single voxel obeying a theory-inspired constitutive model by employing laminate theory. Composite voxels enhance local field quality at a modest computational cost. Our contribution comprises the generalization towards composite boxels (ComBo) that are nonequiaxed, a feature that can pay off for materials with a preferred direction. A novel image-based normal detection algorithm is devised which improves the accuracy by around 30% against the orientation cf. [1]. Further, the use of ComBo for finite strain simulations is studied in detail. An efficient implementation is proposed, and an essential back-projection algorithm preventing physically inadmissible states is developed, which improves robustness. Various examples show the efficiency of ComBo and the proposed algorithmic enhancements for nonlinear mechanical problems. The general usability is emphasized by examining and comparing the performance of myriad Fast Fourier Transform (FFT) based solvers including a detailed description of the new Doubly-Fine Material Grid (DFMG). All of the employed schemes benefit from the ComBo discretization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.