Activities of Daily Livings (ADLs) refer to the activities that are carried out by an individual for everyday living. Recognition of ADLs is key element for building intelligent and pervasive environments. We propose a two-layer HMM to build a ADLs recognition model that can represent the mapping between low-level sensor data and high-level activity based on the binary sensor data. We used embedded sensor with appliances or object to get object used sequence data as well as object name, type, interaction time, and location. In the first layer, we use location data of object used sensor to predict the activity class and in the second layer object used sequence data to determine the exact activity. We perform comparison with other activity recognition models using three real datasets to validate the proposed model. The results show that the proposed model achieves significantly better recognition performance than other models.
Human activity recognition has become an important research topic within the field of pervasive computing, ambient assistive living (AAL), robotics, health-care monitoring, and many more. Techniques for recognizing simple and single activities are typical for now, but recognizing complex activities such as concurrent and interleaving activity is still a major challenging issue. In this paper, we propose a two-phase hybrid deep machine learning approach using bi-directional Long-Short Term Memory (BiLSTM) and Skip-Chain Conditional random field (SCCRF) to recognize the complex activity. BiLSTM is a sequential generative deep learning inherited from Recurrent Neural Network (RNN). SCCRFs is a distinctive feature of conditional random field (CRF) that can represent long term dependencies. In the first phase of the proposed approach, we recognized the concurrent activities using the BiLSTM technique, and in the second phase, SCCRF identifies the interleaved activity. Accuracy of the proposed framework against the counterpart state-of-art methods using the publicly available datasets in a smart home environment is analyzed. Our experiment’s result surpasses the previously proposed approaches with an average accuracy of more than 93%.
Epilepsy is a complex neurological condition that affects a large number of people worldwide. Electroencephalography (EEG) measures the electrical activity of the brain and is widely used in epilepsy diagnosis, but it usually requires manual inspection, which can be hours long, by a neurologist. Several automatic systems have been proposed to detect epilepsy but still have some unsolved issues. In this study, we proposed a dynamic method using a deep learning model (Epileptic-Net) to detect an epileptic seizure. The proposed method is largely heterogeneous and comprised of the dense convolutional blocks (DCB), feature attention modules (FAM), residual blocks (RB), and hypercolumn technique (HT). Firstly, DCB is used to get the discriminative features from the EEG samples. Then, FAM extracts the essential features from the samples. After that, RB learns more vital parts as it entirely uses information in the convolutional layer. Finally, HT retains the efficient local features extracted from the layers situated at the different levels of the model. Its performance has been evaluated on the University of Bonn EEG dataset, divided into five distinct classes. The proposed Epileptic-Net achieves the average accuracy of 99.95% in the two-class classification, 99.98% in the three-class classification, 99.96% in the four-class classification, and 99.96% in classifying the complicated five-class problem. Thus the proposed approach shows more competitive results than the existing model to detect epileptic seizures. We also hope that this method can support experts in achieving objective and reliable results, lowering the misdiagnosis rate, and assisting in decision-making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.