Hypothalamic neuropeptide Y (NPY) and corticotropin-releasing hormone (CRH) influence feeding and levels of plasma glucose, insulin, free fatty acids, and triglycerides. Treatment of genetically obese, ob/ob mice, with dopamine receptor D1/D2 agonists normalizes hyperphagia, body weight gain, hyperglycemia, and hyperlipidemia. We therefore examined whether levels of NPY and CRH immunoreactivity in discrete hypothalamic nuclei are altered in ob/ob mice, and whether dopaminergic treatment reverses this alteration. Female ob/ob mice were treated daily at 1 h after light onset with the D1/D2 agonists, SKF-38393 (20 mg/kg) and bromocriptine (15 mg/kg), respectively or vehicle for 2 weeks. Such treatment, while normalizing body weight gain and hyperglycemia, also significantly reduced elevated NPY immunoreactivity in the suprachiasmatic (by 39%), intergeniculate (by 43%), paraventricular (PVN; by 31%), and arcuate (by 41%) nuclei in obese mice to levels observed in lean mice. This treatment also caused a 45–50% decline in levels of CRH in the PVN and dorsomedial hypothalamus compared to obese controls to levels observed in lean mice. Taken together, these findings suggest that dopaminergic D1/D2 receptor coactivation may improve hyperphagia, hyperglycemia, and obesity in the ob/ob mouse, in part, by normalizing elevated levels of both NPY and CRH.
In mammals, the suprachiasmatic nucleus is responsible for the generation of most circadian rhythms and their entrainment to environmental cues. Cholinergic agents can alter circadian rhythm phase, and fibres immunoreactive for choline acetyltransferase, the biosynthetic enzyme for acetylcholine, are present in the suprachiasmatic nucleus. Since there are no cholinergic somata in the suprachiasmatic nucleus, these fibres must represent the terminals of cholinergic neurons whose cell bodies are located elsewhere in the brain. This study was aimed at locating the cholinergic neurons that project to the suprachiasmatic nucleus by retrograde and anterograde tract-tracing and immunohistochemistry for choline acetyltransferase in the rat. After injection of fluorogold, a retrograde tracer, into the suprachiasmatic nucleus, retrogradely labelled neurons that were immunopositive for choline acetyltransferase were located throughout the rostrocaudal extent of the cholinergic basal nuclear complex, with highest densities in the substantia innominata and the nucleus basalis magnocellularis. A few cells were also located in the medial septum and in the vertical and horizontal limbs of the diagonal band of Broca. In the brainstem, double-labelled neurons were located in the laterodorsal tegmental nucleus, pedunculopontine tegmental nucleus and the parabigeminal nucleus. Injections of the anterograde tracer biocytin in these three brainstem nuclei resulted in fibre labelling in the suprachiasmatic nucleus, consistent with the retrograde findings. No clearly double-labelled cells were located in the retina. These results suggest that the suprachiasmatic nucleus receives cholinergic afferents from both the basal forebrain and mesopontine tegmentum which may mediate cholinergic effects on circadian rhythms.
VGF is a neuronal polypeptide first identified as a cDNA clone in a gene library from nerve growth factor-stimulated PC12 cells. In the present paper, the expression of VGF is examined for the first time throughout the adult rat central nervous system with immunocytochemistry and Northern blot analysis. VGF RNA was found in all brain regions studied, including hypothalamus, hippocampus, cerebellum, olfactory bulb, and cortex. In contrast to the relatively strong immunostaining of hypothalamic neurons, the level of VGF RNA expression in the hypothalamus was relatively low in comparison with other brain regions. With the aid of antisera raised against bacterially produced recombinant proteins containing parts of the VGF sequence, immunoreactive neurons were detected throughout the brain, including regions of the olfactory tubercle, caudate-putamen, thalamus, cortex, amygdala, hypothalamus, midbrain, and hippocampus. VGF-immunoreactive neurons did not contain detectable amounts of nerve growth factor receptor; other neurons that showed nerve growth factor receptor immunoreactivity expressed no VGF immunoreactivity. The lack of colocalization of VGF and nerve growth factor receptor suggests that, unlike expression in PC12 cells, VGF expression in neurons from the central nervous system does not require nerve growth factor stimulation. Within the hippocampus, the location of VGF-immunoreactive cells was suggestive of inhibitory interneurons. VGF-immunoreactive axons and terminals were found throughout the brain. These observations extend our earlier work on VGF expression in the hypothalamus to other regions of the brain and support the conclusion that although VGF expression is only detected in subsets of neurons in each brain region, these subsets are widely distributed throughout the central nervous system.
Previous studies in rat, showing a transient pattern of expression of the alpha 7 nicotinic acetylcholine receptor in the ventrobasal thalamus and barrel cortex during the first 2 postnatal weeks, suggest that these receptors may play a role in development of the thalamocortical system. In the present study, in situ hybridization and radiolabeled ligand binding were employed to examine the spatiotemporal distribution of alpha 7 mRNA and alpha-bungarotoxin binding sites in the thalamocortical pathway of mouse during early postnatal development. As in the rat, high levels of alpha 7 mRNA and alpha-bungarotoxin binding sites are present in the barrel cortex of mouse during the first postnatal week. Both alpha 7 mRNA and its receptor protein are observed in all cortical laminae, with the highest levels seen in the compact cortical plate, layer IV, and layer VI. When viewed in a tangential plane, alpha 7 mRNA and alpha-bungarotoxin binding sites delineate a whisker-related barrel pattern in layer IV by P3-5. Quantitative analysis reveals a dramatic decrease in the levels of expression of alpha 7 mRNA and alpha-bungarotoxin binding sites in the cortex by the end of the second postnatal week. Unlike in the rat, only low levels of alpha 7 mRNA or alpha-bungarotoxin binding sites are present in the ventrobasal complex of the mouse thalamus. The broad similarities between the thalamocortical development of rat and mouse taken together with the present results suggest that alpha 7 receptors located on cortical neurons, rather than on thalamic neurons, play a role in mediating aspects of thalamocortical development.
Increases in ventromedial hypothalamic (VMH) norepinephrine (NE) levels and/or activities have been observed in a variety of animal models of the obese insulin-resistant condition. This study examined the metabolic effects of chronic NE infusion (25 nmol/h) into the unilateral VMH of normal rats. Within 4 days, VMH NE infusion significantly increased plasma insulin (140%), glucagon (45%), leptin (300%), triglyceride (100%), abdominal fat pad weight (50%), and white adipocyte lipogenic (100%) and lipolytic (100%) activities relative to vehicle-infused rats. Furthermore, isolated islet insulin secretory response to glucose (15 mM) within 4 days of such treatment was increased over twofold (P < 0.05). Among treated animals, fat stores continued to increase over time and plateaued at approximately 2 wk (3-fold increase), remaining elevated to the end of the study (5 wk). By week 4 of treatment, NE infusion induced glucose intolerance as evidenced by a 32% increase in plasma glucose total area under the glucose tolerance test curve (P < 0.01). Whole body fat oxidation rate measured after 5 wk of infusion was significantly increased among treated animals as evidenced by a reduced respiratory quotient (0.87 +/- 0.01) relative to controls (0. 90 +/- 0.01). VMH NE infusion induced hyperphagia (30%) only during the first week and did not affect body weight over the 5-wk period. Increases in VMH NE activity that are common among obese insulin-resistant animal models can cause the development of this obese glucose-intolerant (metabolic) syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.