Background & Aims: The pathological hallmark of nonalcoholic fatty liver disease (NAFLD) is an imbalance in hepatic lipid homeostasis, in which lipophagy has been found to play a vital role. However, the underlying molecular mechanisms remain unclear. We investigated the role of chaperone-mediated autophagy (CMA) in the pathogenesis of NAFLD. Methods: CMA activity was evaluated in liver tissues from NAFLD patients and highfat diet (HFD)-fed mice. Liver-specific LAMP2A-knockout mice and HepG2 cells lacking LAMP2A [L2A(-) cells] were used to investigate the influence of CMA on lipolysis in hepatocytes. The expression of Plin5, a lipid droplet (LD)-related protein, was also evaluated in human and mouse liver tissues and in [L2A(-)] cells. Results: Here, we found disrupted CMA function in the livers of NAFLD patients and animal models, displaying obvious reduction of LAMP2A and concurrent with decreased levels of CMA-positive regulators. More LDs and higher serum triglycerides accumulated in liver-specific LAMP2A-knockout mice and L2A(-) cells under high-fat challenge. Meanwhile, deleting LAMP2A hindered LD breakdown but not increased LD formation. In addition, the LD-associated protein Plin5 is a CMA substrate, and its degradation through CMA is required for LD breakdown. Conclusions: We propose that the disruption of CMA-induced Plin5 degradation obstacles LD breakdown, explaining the lipid homeostasis imbalance in NAFLD.
Background
Despite emerging evidence on the therapeutic potential of mesenchymal stem cells (MSCs) for liver fibrosis, the underlying mechanisms remain unclear. At present, MSC-derived exosomes (MSC-EXOs) are widely accepted as crucial messengers for intercellular communication. This study aimed to explore the therapeutic effects of MSC-EXOs on liver fibrosis and identify the mechanisms underlying the action of MSC-EXOs.
Methods
Carbon tetrachloride was used to induce a liver fibrosis model, which was intravenously administered with MSCs or MSC-EXOs to assess treatment efficacy. The resulting histopathology, fibrosis degree, inflammation and macrophage polarization were analyzed. RAW264.7 and BMDM cells were used to explore the regulatory effects of MSC-EXOs on macrophage polarization. Then, the critical miRNA mediating the therapeutic effects of MSC-EXOs was screened via RNA sequencing and validated experimentally. Furthermore, the target mRNA and downstream signaling pathways were elucidated by luciferase reporter assay, bioinformatics analysis and western blot.
Results
MSCs alleviated liver fibrosis largely depended on their secreted exosomes, which were visualized to circulate into liver after transplantation. In addition, MSC-EXOs were found to modulate macrophage phenotype to regulate inflammatory microenvironment in liver and repair the injury. Mechanically, RNA-sequencing illustrates that miR-148a, enriched in the MSC-EXOs, targets Kruppel-like factor 6 (KLF6) to suppress pro-inflammatory macrophages and promote anti-inflammatory macrophages by inhibiting the STAT3 pathway. Administration of miR-148a-enriched MSC-EXOs or miR-148a agomir shows potent ameliorative effects on liver fibrosis.
Conclusions
These findings suggest that MSC-EXOs protect against liver fibrosis via delivering miR-148a that regulates intrahepatic macrophage functions through KLF6/STAT3 signaling and provide a potential therapeutic target for liver fibrosis.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.