Despite the impressive merits of low-cost and high-safety electrochemical energy storage for aqueous zinc ion batteries, researchers have long struggled against the unresolved issues of dendrite growth and the side reactions of zinc metal anodes. Herein, a new strategy of zinc-electrolyte interface charge engineering induced by amino acid additives is demonstrated for highly reversible zinc plating/stripping. Through electrostatic preferential absorption of positively charged arginine molecules on the surface of the zinc metal anode, a self-adaptive zinc-electrolyte interface is established for the inhibition of water adsorption/hydrogen evolution and the guidance of uniform zinc deposition. Consequently, an ultra-long stable cycling up to 2200 h at a high current density of 5 mA cm −2 is achieved under an areal capacity of 4 mAh cm −2 . Even cycled at an ultra-high current density of 10 mA cm −2 , 900 h-long stable cycling is still demonstrated, demonstrating the reliable self-adaptive feature of the zinc-electrolyte interface. This work provides a new perspective of interface charge engineering in realizing highly reversible bulk zinc anode that can prompt its practical application in aqueous rechargeable zinc batteries.
Suppressing by-product via stratified adsorption effect to assist highly reversible zinc anode in aqueous electrolyte
The pursuit for high‐energy and intrinsically safe energy storage is significantly driving the development of solid‐state alkali metal batteries. The interfacial contact between the metal anode and the solid electrolyte plays a key role in enabling stable cycling of solid batteries. However, the sluggish alkali atom replenishment rate during stripping unavoidably leads to the interface deterioration that destroys the initial physical contact by forming interfacial voids and triggering the dendrite growth. Herein, a hybrid bulk Na anode approach is proposed by incorporating an ion‐conducting phase into a metallic Na matrix, constructing an abundant interfacial electrochemical reaction area and enabling a balanced Na replenishment and consumption to minimize cycle‐induced interface deterioration. Specific attention is paid to the effects of the second phase on the wettability and creep ability of hybrid Na metal. A high critical current density (3.1 mA cm‐2) and long cycling life (6000 h in 0.5 mA cm‐2) are achieved for the symmetric cells. Full cells coupling the hybrid anode with the Na3V2(PO4)3/C cathode deliver excellent cyclability over 7300 cycles at a high rate of 5 C. The viewpoint of balancing the consumption and replenishment rate of metal atoms paves a new way for designing cycle‐stable anode/electrolyte interface in solid‐state batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.